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This collection of technical reports addresses the following
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determination of operating characteristics of weighted energy
detectors with Gaussian signals; alias-free smoothed Wigner
distribution functions and their properties; and an investigation
of the filtered complex envelope for improved behavior.
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NUSC Technical Report 8667
31 January 1990

Evaluation of Attenuation/Minimum-Phase Pairs
by Means of Two Fast Fourier Transforms

Albert H. Nuttall

ABSTRACT

A numerically efficient method of obtaining the minimum-phase
characteristic corresponding to a measured attenuation (or
decibel gain) response of a linear network, by means of two fast
Fourier transforms, is presented and programmed in BASIC. A
method of extrapolating the measured attenuation to very small
and large frequencies, as required by the theoretical
transformations, is suggested. The attendant logarithmic
singularities in the attenuation are subtracted out and handled
separately, leaving a residual which is well behaved for
numerical Fourier transformation.

Approved for public release; distribution is unlimited.
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EVALUATION OF ATTENUATION/MINIMUM-PHASE PAIRS

BY MEANS OF TWO FAST FOURIER TRANSFORMS

INTRODUCTION

It is often important to determine whether a given linear
device is minimum-phase [1], because if so, it is then possible
to compensate the filter characteristic with reciprocal pole-zero
locations and obtain an overall all-pass characteristic with flat
amplitude and linear phase responses. A relatively simple way of
making this determination is to measure the attenuation (or
decibel gain) and actual phase shift of the given linear device
and then compute the minimum-~-phase corresponding to the measured
attenvation. 1If this latter calculated phase agrees with the
actual measured phase, then the filter is minimum-phase.

The minimum-phase corresponding to a given attenuation
function is determined analytically by a Hilbert transform
[2; chapter 6, article 22]) or [3; section 10-3]). However, this
direct integral evaluation is computationally unattractive due to
two poles on the line of integration [3; (10-67)]. 1In addition,
it yields only a single value for the phase after each numerical
integration. We will circumvent both of these difficulties by
first subtracting the singularities (which will be handled
analytically) and then employing fast Fourier transforms for

efficient numerical evaluation of the entire phase response.

1/2
Reverse Blank
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TRANSFER FUNCTION RELATIONS
FILTER CHARACTERIZATIONS

A linear time-invariant filter is characterized by its
impulse response h{t) or by its transfer function H(f) according

to Fourier transform
H(E) = J dt exp(-i2nft) h(1) = E{h(1)} . (1)

(Integrals without limits are over the range of nonzero
integrand.) Both the impulse response h(t) and the transfer
function H(f) can be complex functions of time delay t and
frequency f, respectively.

The transfer function will be represented in terms of its

real and imaginary parts according to
where

1 *
Hr(f) - f[H(f) + H ()] ,

1 . *
H,(f) = Tflﬂ(f) - H (f)] . (3)
It can also be representes in terms of its even and odd parts as
H(f) = He(f) + Ho(f) , (4)

which are generally defined according to
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1
He(f) - E{H(f) + H(-f)] = I dt cos(2nft) h(Tt) ,

H (£) = S(H(f) - H(-£)] = -ij dr sin(2rft) h(T) . (5)

Functions He(f) and H (f) are both complex generally, whereas
Hr(f) and Hi(f) are always real. Impulse response h{(t) can be
complex.

(In the special case where impulse response h(t) is real,

then

H (£) = H_(f) = j dt cos(2nft) hiT) ,

Hy(£) = i B (f) = -if at sin(2nft) hit) .) (6)

CAUSAL FILTER

A filter is said to be causal when its impulse response h(T)

is zero for negative arquments; that is,
h(t) = 0 for Tt < 0 . (7)

However, h{(t) can still be a complex function of t. 1In this
causal case, the real and imaginary parts of the transfer
function H(f) satisfy a pair of Hilbert transform relationships,
provided that h(t) does not contain any impulses at the origin;
see also [3; page 198]. The Hilbert transform of an arbitrary

complex function G(x) is defined as
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1[4 Slur | 1
BG(x)) » ¢ §au B . 2o cix) (8)

where the tic mark on the integral sign denotes a principal value
integral [4; section 3.05} and & denotes convolution. Principal
value integrals are considered in appendix A.

In order to derive Lhe Hilbert .elations of interest, let

U(x) be the unit step function,

1 for x > 0
U(x) = } . (9)
0 for x ¢ 0

Then, because h{t) is causal, transfer function (1) becomes

H(f) = I dt exp(-i2nft) h(x) U(x) = P{h(t) U(T)} =

]
O]
[ ST

H(f) - B{H(f)]} . (10)

ficre, we used the Fouri.r transform of the unit step function

U(t) [3; (3-13)] and definition (8). Equation (10) yields

H(f) = -i B{H(f)} (11)
or, more explicitly,
1
H(f) = B(H(f)) = =2 @ H(f),
1
Hi(f) - g{Ht(f)) - - TF @ Ht(f) . (12)
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We repeat that transfer function relations (12) hold true even
when impulse response h(t) is complex; only causality is used.
Analogous properties to (12) hold between the eveu and odd parts,
He(f) and Ho(f>, of the transfer function H(f) as well. Namely,
because the Hilbert transform of an even (odd) function is odd

(even), there follows, for a causal (but possibly complex) h(rt),
He(f) = —i E(HO(f)} ' Ho(f) - -i E{He(f)} . (13)

If h(t) contains an impulse at the origin, both parts of

(12) are false, even though h(t) may be causal. Consider

h(x) = (a + ib) &(1), a and b real . (14)
Then (1) yields constant transfer function
H(f) = a+ib, Hr(f) = a, Hi(f) = b, He(f) = a+ib, Ho(f) = 0. (15)

But since the Hilbert transform of a constant is zero
[4; section 3.05)], neither part of (12) is satisfied, and the

first part of (13) is false. On the other hand, if
h{t) = (a + ib) &(t - T) , a and b real , (16)

then (12) and (13) are satisfied only if T > 0. Here, we used

the facts that
H{cos(2nfT)}} = sin(2nf[T|), H{sin(2rfT)} = -sgn(T) cos(2nrfT),(17)

where sgn(T}) is the polarity of T. Henceforth, we assume that
components like (14) and (15) are not present in the filters of

interest; see also [3; page 198].
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For a causal filter, (2) and (12) afford a method of
obtaining the complete transfer function from its real part

alone, according to
H(f) = Hr(f) + i Hi(f) =
- Hr(f) - i g{ur(f)} . (18)

However, a more attractive approach, computationally, is to use

Fourier transforms, as follows. Define inverse Fourier transform
h(t) = B 18 _(£)) = f df exp(i2nfr) H_(f) (19)

for any real part Ht(f). (The notation h (7)) cannot be used
instead of h(t), because h(t) is not the real part of h(<t), nor
is h{t) necessarily real.) Substitution of (3) into (19)

immediately yields
bto) = 3[no « v'-n] 5 e = pN (20)

(These particular relations in (20) actually hold true for any
filter h(t), noncausal as well as complex.) Then because h{(T) is
causal, there follows directly
2h(~) for v > 0
h(t) = = 2 hit) u(t) . (21)
0 for t < 0
In summary, the method for obtaining the complete transfer

function H(f) from just its real part Hr(f), for a causal filter,
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is to perform, in order, the following operations:

nit) = £ la_c6))
h(t) = 2 h(1) U(x) ,

H(f) = F(h(T)} . (22)

This procedure requires two Fourier transforms, which can be
accomplished very quickly and efficiently by means of two fast
fourier transforms. Furthermore, a fast Fourier transform
output sweeps out the complete range of argument values, whereas
the brute force Hilbert transform integral of (18) and (8)
requires an additional numerical integration for each frequency £
of interest. Functions h(t) and h(t) in (22) can be complex.

An accuracy check on the procedure in (22) is afforded by
comparing the real part output of the Fourier transform in the
bottom line with the input Hr(f) utilized in the top line. The
complete set of function values of Hr(f) for all f is required
for this procedure; in retu.n, the complete set of values of
Hi(f), for all f, results. The operations in (22) are linear
insofar as the overall transformation of Hr(f) is concerned, and
so superposition can be used for any breakdown of Ht(f) into
components, if desired.

The rule for obtaining H(f) or Hi(f) from Hr(f)' as given in
(22), applies whether filter H(f) is minimum-phase (1] or not.
The only prerequisite for the validity of (22) is the causality
of impulse response h{(T).

1f only He(f) were available (instead of Ht(f)), a more

attractive procedure for obtaining H(f) or Hi(f) than using (4)
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and Hilbert transform (13), is to observe that, in general, for

any filter, the inverse Fourier transform
() - I df exp(i2nft) H,(f) = %[h(t)+h(-r)] = h (1). (23)

Here, we used (5), the inverse to (1), and the general definition
of the even part of an arbitrary complex function. Then, if h(rt)

is causal, we have
h(t) = 2 he(t) U(t) . (24)

Thus, the procedure for obtaining H(f) is identical to (22) if we

replace Hr(f) and h(<t) by He(f) and he(T), respectively.
ONE-~-SIDED SPECTRAL FUNCTIONS

The analogous situation in the frequency domain (to causality
in the time delay domain) is as follows: if (complex function)

A(f) is zero for negative arguments, that is,
A(f) = O for £ < 0 , (25)

then a procedure similar to (10)-(11) reveals that the inverse

Fourier transform of A(f) is given by
a(t) = FHA(f)} = i Ba(T)} . (26)
That is, in terms of real and imaginary parts,
a (t) = - H{a; (1)} , a;(t) = Bla (1)} . (27)

The function a(t) is called an analytic waveform, for reasons to

become apparent shortly.
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GENERAL SPECTRAL RELATIONS

For future purposes, the Hilbert transform of a completely

arbitrary complex waveform b(rT),
1
b (1) = B{b(T)} = e @ b(T) ., (28)

has spectrum (Fourier transform)

(29)

-i B(f) for £ > O
E{hH(T)] = -i sgn(f) B(f) = { } '

i B(f) for £ < 0

where B(f) is the spectrum of b(t). Here, we used the fact that
the following two functions are a Fourier transform pair

[3; apply (2-34) to (3-9)]):

1 .
Friandint: sgn(f) . (30)

The left-hand side of (29) is the Fourier transform of the
Hilbert transform of b(t). It cannot be labeled as BH(f). which
is the Hilbert transform of the Fourier transform B(f) of b(rt).
The two operations of Hilbert transformation and Fourier
transformation are not interchangeable, in general.

It follows from (29) that
FPi{b(t) + i bH(T)] = 2 B(f) U(f) , (31)

which is a one-sided spectrum. Also, b(t) + i bH(T) is an

analytic waveform. Waveform b(t) is completely arbitrary here.

10
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ANALYTICITY OF TRANSFER FUNCTION
Consider the causal exponential impulse response
h(t) = exp(-1) U(T) . (32)

The corresponding transfer function is

1

HUE) = 15 1amf

(33)

which has a pole in the upper-half f-plane at f = i/(2n), but
which is analytic in the lower-half f-plane. (The lower-half
f-plane corresponds to the right-half s-plane of Laplace
transforms.)

This analyticity of the transfer function H(f) in the lower-
half f-plane is generally true for causal finite-energy filters,
as may be seen by the following argqument. Let frequency f be a
complex variable with real and imaginary parts according to
f = fr + ifi. Then, for a causal filter, (1) can be expressed
more explicitly as

+@

H(f) = [ dt exp(-i2nf ) exp(2nf;T) h(T) . (34)
0

The first exponential in (34) has magnitude 1 for all T on the
contour of integration. And if fi < 0, the second exponential
term in (34) decays with increasing T, keeping the integral
convergent, as it was for fi = 0. That is, transfer function
H(f) is analytic in the lower-half f-plane for a causal impulse

response h(t). Notice, however, that no statements can be made

11
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about the locations of the zeros of transfer function H(f) in the
complex f-plane. Thus we have

causal h(t) —> analytic H(f) in lower-half f-plane (35)

The converse is also true, namely, that analyticity implies

causality. To develop this point, express the inverse Fourier

transform to (1) in the form

h(t) = J df exp(i2nft) H(f) =
¢

- J df exp(i2nf_t) exp(-2nf ) H(f) ,

(36)
Ca

where contours C, and C, are depicted in the complex f-plane in
figure 1. Because transfer function H(f) is analytic in the
(crosshatched) region between contours Cy and C,, we are allowed

to move the integration freely between them, as done in (36),

f-plane

I

analytic H(f)

; ///// /]

A 4
L 4

W
¥

Figure 1. Complex f-Plane Contours

12
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without altering the value h(t) of the integral. On contour Cys
we have fi < 0 everywhere. Therefore, if v < 0 in (36), the
second exponential decays to zero as contour c, is moved farther
down in the f-plane. Because H(f) is analytic in the lower-half
f-plane, we can move C2 arbitrarily far down, causing the
integrand of (36) to go to zero, thereby leading to a zero value

for h(t) whenever vt < 0. Thus, we have
analytic H(f) in lower-half f-plane —> causal h(T) . (37)

This equation is the converse to (35).

Because we have already shown in (10)-(12) that a causal
impulse response h(t) leads to a transfer function H(f) with
Hilbert transform relations between its real and imaginary parts,
it follows from (37) that an analytic transfer function H(f)
leads to the same conclusions. This means that, for an analytic
transfer function H(f) in the lower-ha’f f-plane, we can use the
efficient procedure given in (22), in terms of two (fast) Fourier
transforms, to find the imaginary part Hi(f), given only the real
part H_(£).

r

For the example given earlier in (33), we have real part

1
1 + (2nf)2

H (f) =

Then from (22), we obtain, in order,

- —1
1 + i2nf '’

h(t) = 3 exp(=|t]) , h(t) = exp(-T) U(T) , H(E)

which corroborates (32) and (33).

13/14
Reverse Blank
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MINIMUM-PHASE TRANSFER FUNCTIONS

From this point on, we presume that impulse response h(<t) is
causal and that transfer function H(f) contains only poles and
zeros. It then follows from (35) that transfer function H(f)
has no poles in the lower-half f-plane. We also assume now that
H(f) has no zeros in the lower-half f-plane; that is, the filter

is minimum-phase [1,2,3]. In this case, the function
Q(f) = - 1ln H(f) (38)

is analytic in the lower-half f-plane, because the function 1ln z
is nonanalytic only at z = 0 and z = @ in the complex z-plane.

Accordingly, by analogy to (37), inverse Fourier transform
q(t) = J df exp(i2nft) Q(f) (39)

is causal. (An example is given in appendix B.) Therefore, just

as shown in (10)-(12), the real and imaginary parts of Q(f),
Q(f) = Qr(f) + i Qi(f) ' (40)

can be found from each other by means of Hilbert transforms. 1In

particular, as in (12},
Qt(f) - E(Qi(f)} ' Qi(f) = - Q(Qr(f)} . (41)

Alternatively, according to the sequel to (37), because Q(f)
is analytic in the lower-half f-plane, the imaginary part Qi(f)
can be found from real part Qr(f) according to procedure (22)

involving two Fourier transforms.

15
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Interesting interpretations of minimum-phase filters, in
terms of their group delay and rate of energy flow through the
filter, are given in (5; pages 132 - 133). 1In particular, the
minimum-phase filter has the smallest group delay of any stable

filter with specified magnitude transfer function.

ATTENUATION AND PHASE

There is another way of describing a transfer function H(f)
rather than by its real and imaginary parts, which is very useful

in some applications. Namely, let
H(f) = exp(-aff) - i B(£)] , (42)

where
a(f) = attenuation

} of filter . {43)
B(f) = phase shift

Reference to (38) and (40) immediately reveals that
alf) = Qr(f) r B(f) = Qi(f) . (44)

Therefore, if filter H(f) is minimum-phase, according to the
discussion in (38)-(41), «(f) and B(f) can be found from each

other by means of Hilbert transforms, In particular,

|

B(f) = - Blalf)} = - == @ alf) . (45)

"

n

(Strictly, this relation is not usable and must be modified to

allow for attenuations a(f) with logarithmic singularities; for

16
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example, see [3; pages 206 -~ 208]}. This manipulation is
discussed in appendix C.)
Alternatively, the procedure in (22) can be employed in the
form
gty = F ey},
g(t) = 2 g(t) u(t) ,
a(f) + i B(f) = P{g(T)} . (46)

The function g(t) is defined by the inverse Fourier transform in
the top line of (46). Phase shift B(f) for a minimum-phase
filter is given by the imaginary part of the Fourier transform in
the bottom line of (46).

A common alternative descriptor of the frequency behavior of

a filter is the gain G(f) in decibels, defined as
G(f) = 20 log,, |H(f)] . (47)
Because the attenuation follows from (42) as
a(f) = - 1n |H(E)] , (48)

the gain G(f) and the attenuation «(f) are related by

20

G(f) = - TR710)

ax(f) = — 8.686 a(f) . (49)

Measurement of either one is sufficient to find the other and to

thereby determine the phase shift B(f) of a minimum-phase filter.

17
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EXAMPLE AND LIMITATION

We again consider the example given in (32)-(33), namely

h{t) = exp{-t) U(T) , H{f) = T—TLTEH? . (50)
The attenuation and phase follow from (42) according to
alf) = 3 1n(1 + an£?)
B(f) = arctan(2nf) . (51)

If we attempt to apply the inverse Fourier transform in the top
line of (46) to the attenuation a«(f) in (51), we encounter a
divergent integral because o(f) ~ ln|f]|] as £ » &=,

More generally, if filter H(f) has a zero at a frequency f
equal to any finite real value, the attenuation «(f) has a
logarithmic singularity at that real frequency, and the inverse
Fourier transform in (46) diverges. Because typical filters very
often have this feature (and almost always at £ = 0 and f = +=),
a way must be found to circumvent tne divergent part of the
inverse Fourier transform integral, so that the efficient

procedure of (46) can be salvaged.

18
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SUBTRACTION OF SINGULARITY

The procedure to be used here is one commonly adopted to
numerically evaluate convergent integrals with singular

integrands; it is illustrated by the example

a
I-decoix, v <1, (52)
0 X

If v is positive, the integrand has an infinite cusp at the

origin, yet the integral converges, because v < 1. We express

a a
I = I dx cCOSX —vl + 1 I dx cosx - 1 J “% (53)
0 X 0 X 0

which is allowed, because both integrals converge. The last

integral in (53) can be done in closed form, yielding al'v

2=V

/(1=-v).
Also, the middle .ntegrand now behaves as x as x = 0+, which
is zero at the origin, because 2-v > 1; this behavior enables a
straightforward numerical evaluation of the middle integral.

The key to this procedure is to find a component that can be
integrated in closed form and that, when subtracted from the

given integrand, yields a well-behaved residual for numerical

integration.
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APPLICATION TO FILTERS

The way we apply this subtraction procedure to a given
attenuation a(f) with logarithmic singularities is to break it

into two parts,
al(f) = al(f) + az(f) , (54)

where attenuation al(f) contains all the singqular components and
has a known closed form minimum-phase pair Bl(f). (An example is
furnished by (50) and (51); some additional examples are listed
in appendix D.) Then residual attenuation “Z(f) is found
according to

o, {f) = a(f) - « (f) (55)

and is well-behaved for all f. Residu~” ~;,’(f) is subjected to
the repeated Fourier transfor~ rp.ocedure detailed in (46),
resulting in phase shift function Bz(f)‘ Finally, the complete
minimum-phase corresponding to the given attenuation a«(f) is

obtained from

B(f) = B,(f) + B,y (£) . (56)
The procedure can be summarized as follows:
al(f) —> B(£f) desired ;
o (£) + ey (f) —> B,(f) + B,(f) wused . (57)

The exact choice of attenuation/minimum-phase pair “1(f)’
Bl(f) is not critical, except that residual az(f) must not have

any singularities and must decay (rapidly) to zero for large f.

20
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Of course, the given attenuation a(f) mﬁst be known for all f in
order to apply this (or any) procedure for obtaining minimum-
phase shift B(f), whether obtained directly by Hilbert transforms
or by means of a Fourier procedure. The actual numerical
evaluation of the Fourier procedure delineated in (46) is
accomplished by means of fast Fourier transforms; the details are

presented in appendix E.

SHORTCOMING OF HILBERT TRANSFORM

Suppose that two minimum-phase filters H_(f) and Hb(f) differ

onlvy bv a complex scale factor:

Hb(f) - C Ha(f) . (58)

Then

ab(f) - aa(f) - Injec] ,
Bb(f) = 6a(f) - arg(c) + 2rn , n integer . (59)

However, if aa(f) and Ba(f) are a Hilbert transform pair, ab(f)
and 5b(f) cannot possibly be (unless ¢ = 1 and n = 0) because the
Hilbert transform of a constant is zero. Functions ab(f) and
ab(f) are both "incomplete," in that attenuation ub(f) contains
no information about arg{(c), while phase Bb(f) contains no
information about j¢|. This means that the Hilbert transform of
a given attenuation (phase) yields a phase (attenuation) function
that can differ from the actual phase (attenuation) of a minimum-

phase filter by an arbitrary additive constant. Some information
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is inherently absent from 2 given attenuation (phase) function.
In addition, because the Hilbert transform of a constant is zero,
additive constants are lost through this transformation. (The
situation is somewhat similar for the Fourier ttansform procedure
given in (46).)

Alternatively, suppose that
hb(T) = ha(T - T) , H,(£) = H (f) exp(-i2nfT) . (60)

Then filter Hb(f) contains a transfer function component of
exp(~i2nfT), with corresponding attenuation 0 and phase 2nrfT.
Thus, the attenuation contains no information about a pure time
delay. However, it should be noted that this component
exp(-i2nfT) does not possess poles and zeros =t all, but in fact

has an essential singularity at f = o,
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APPLICATION TO MEASURED DATA

In this section, we will apply the previous Fourier procedure
to a measured pair of attenuation and phase shift functions in
an effort to determine if the filter is minimum-phase. The
particular filter is a J15-1 transducer used as a continuous-wave
source in the 10 to 900 Hertz range. The transmitting current

response of this device is defined as the ratio

output pressure
- (61)
input current

and is the transfer function of interest. The reference level is
taken as 1 gyPa/Amp. The measurements procedure include a
water-path propagation delay (of unknown value) between the
transducer and a calibrated receiving hydrophone.

The measured decibel gain, (47)-(49), of transfer function
(61) is displayed in figure* 2 for the range of frequencies from
30 to 500 Hertz, on a logarithmic frequency abscissa. Also
superposed are the decibel gain responses of filters with 1 or 2
or 3 poles at the origin, which plot as straight lines on this
type of paper. This information is required for determining the
behavior of the filter from 30 Hertz down to £ = 0 and is
necessary because the Hilbert and Fourier procedures both require
knowledge of the complete attenuation (or gain) for all
frequencies, in order to determine the value of the corresponding
minimum-phase shift at just one frequency. It may be reasonably

concluded from the fits in figqure 2 that the transducer of

*Figures 2 through 11 are collected at the end of this section.
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interest here has a double zeroc at f = 0.

In addition, the same fitting procedure has been attempted in
the neighborhood of 500 Hertz in figure 2, as may be seen by the
superposition of responses for filters with decays corresponding
to 0 or 1 or 2 or 3 poles at £ = =, However, the situation is
rather poor at this upper end of the measured frequency range,
because, as seen in figure 2, the transducer has not yet
developed its asymptotic behavior at f = 500 Hertz. This
behavior is consistent with the information mentioned above,
which describes the use of this device as a source up to 900
Hertz. Thus, we have a situation where we have insufficient
measurements to fully apply the theoretical developments
presented earlier. Nevertheless, we will attempt to circumvent
the inadequacy by extrapolating the given measurements into the
frequency range above 500 Hertz and then using the combination of
measured and extrapolated gains to determine the minimum-phase

response.

PHILOSOPHY OF EXTRAPOLATION

A situation of frequent occurrence is the following. We have
a measured residual attenuation az(f), but it is available only
< £ < £

for 0 < ¢ see (54)-(57). We presume that attenuation

1 2}
az(f) is even about £ = 0. Call this total frequency range of
known values, K. Denote the remainder of the frequency range,

where az(f) is unknown, by U.

We want to evaluate the minimum-phase corresponding to az(f).
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namely

+®
as{u)
B,(£) = - Blay(f)) = - 1 [au 2 . (62)

-

Our approach is to extrapolate az(f) beyond K into the unknown
frequency range U. Call this extrapolated function aZe(f); it
exists for all f. This extrapolation must be rather close to the
true (unknown) attenuation “z‘f’ in U, but aze(f) need not agree
with az(f) inside K. 1In particular, aZe(f) and az(f) should
match in value and slope at the boundaries of K.

Then, we can obtain the following approximation to phase
(62), namely

1 aylu) ajelu)
BaalE) "de“f-u‘if"“f-u -
X U

. (63)

- B i

f - u " f - u

+®
J du az(u) - a2e(u) 1 I du uZe(u)
K

The first (finite) integral in (63) is done numerically, by
employing the Fourier procedure presented here. The second
integral in (63) is actually divergent and is instead replaced by
use of a known attenuation/minimum-phase pair, “Ze(f)' sze(f).
The key to this procedure is a shrewd choice for the
extrapolated attenuation uZe(f). Several candidates, along with
the corresponding minimum-phase functions, are listed in appendix

D.
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LAPLACE TRANSFORM NOTATION

For convenience of notation, we employ here the Laplace
transform of the impulse response, namely
4+
L(s) = j dt exp(-st) h(T) , (64)
0
where we have specifically limited consideration to causal

filters. The connection with the Fourier transform (1) is

H(f) = L(i2nf) . (65)

EXAMPLE A

The first attempted fit to the measured gain in figure 2 is
by means of filter

2

cC 8§
L(S) - (s + a)(s + b) ’ (66)

with constants a = 260, b = 330, and ¢ = - .55E8. This filter
has the desired double-order zero at the origin, but does not
decay for large frequencies. The gain of (66) is superposed on
the measured gain in figure 3; it is seen that the constants have
been chosen to give a fit that matches in value and slope for
small frequencies and that matches the measured gain value at
S00 Hertz.

The difference in decibels between the measured gain and the
fitted gain is displayed in figure 4; it goes to zero at 30 and

500 Hertz and is assumed to be zero outside this range. This
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assumption is not likely to be correct for f greater than 500
Hertz, but it is necessary in order to proceed with the numerical
manipulations. The difference in attenuations, uz(f) of (55), is
available by dividing the result in figure 4 by -8.686; see
(47)-(49).

The residual attenuation az(f) is subjected to the cascaded
Fourier procedure of (46), and the resultant phase Bz(f) is. added
to the minimum-phase ﬁl(f) corresponding to (66). The final
total phase B(f) is shown in figure 5, with the label A&T,
meaning analytic and transform, that is, al(f) plus Bz(f).
Superposed on this figure is the measured phase, with the label
M&D, meaning measured and time-delay adjusted. Recall in the
discussion surrounding (61) that there is an unknown time delay,
between the transducer and receiving hydrophone, included in the
measurements taken. Accordingly, a selection of time delay was
made that yielded the best eyeball fit of the two phases over
the range of frequencies from 0 to 400 Hertz in figure 5; this
corresponds to an additive linear phase function of frequency, as
indicated by example (60). The time delay was 1.43 ms.

The agreement between the minimum-phase and the measured
results in figure 5 allow us to conclude that the J15-1
transducer is indeed a minimum-phase filter, at least over the
frequency range up to 400 Hertz. The difference between the two
results is 17° at 500 Hertz, which is significant. However, the
reason for this discrepancy is undoubtedly due to the fact that
(66) is not the correct fit for £ > 500 Hertz, because (66) has

no decay for large frequencies.
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EXAMPLE B

In an effort to find a better phase match, another fit was

also tried, namely filter

C52

L(s) = 3
(s + ao)((s + a)* + b

ol (67)

with constants a, = 4000, a = 260, b = 400, and ¢ = - ,275E12.
The measured and analytical decibel gains are plotted in figure
6, while the decibel difference is plotted in figure 7. The
corresponding two phase plots, obtained by an identical procedure
to that described in example A above, are presented in figure 8.
Now, the difference in the two phase curves at 500 Hertz has
decreased, but only slightly, to 14°. Apparently, the unmeasured
decibel gain, in the frequency range above 500 Hertz, is causing
inaccurate calculations of the minimum-phase in the region just
below 500 Hertz, due to our inability to correctly extrapolate,
by means of (66) and (67), to what the filter gain truly was in
that frequency range. This supposition is consistent with the
observation that the minimum-phase at a particular frequency is
largely governed by the (rate of change of the) attenuation in
the neighborhood of that frequency [2; page 345]. The agreement
in phase results for the lower frequencies comes about because
errors in gain measurements above 500 Hertz have a much reduced

effect on the calculated phase at low frequencies.

28




TR 8667
EXAMPLE C

In an attempt to justify this conjecture, an estimate of the
unmeasured gain in the frequency range from 500 to 900 Hertz was
made and is illustrated in figqure 9. A droop of 7 dB, centered
at 565 Hertz, has been added and is annotated by the phrase
"augmented”. The fit is again (66), with the same constants as
used for example A, and is superposed in the figure.

The two phase curves are illustrated in figure 10. Now, the
discrepancy between the two results is negligible (within
measurement error) all the way up to 500 Hertz, the maximum
frequency at which the phase was measured. Thus, we feel
justified in concluding that the device under investigation is
indeed a minimum-phase filter, at least over the measured

frequency range up to 500 Hertz.

LIMITED FREQUENCY RANGE

It has been stated above that the measured filter appears to
be minimum-phase in a particular frequency range. Strictly, this
is not a valid concept; but it is necessary to allow for it in
practice, where filter responses cannot possibly be measured for
all frequencies. For example, suppose that the transfer function
H(f) has a collection of poles and zeros in the upper-half
f-plane, all fairly near the origin f = 0. 1In addition, let H(f)
have a pole-zero pair far away from the origin, but symmetrically
located about the real f axis, so as not to affect the gain or

attenuation; see the pair near f = fz in figure 11.
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Obviously, the filter in fiqure 11 cannot be minimum-phase,
because it has a zerd in the lower-half f-plane. Yet, its
measured phase, for frequencies less than fl’ would be
indistinguishable from that of the minimum-phase filter that
does not contain that extra pair. Thus, we would reasonably
conclude, upon the basis of the measurements made, that the
filter is "minimum-phase for f < fl." Furthermore, this is a
practically useful concept because compensation of the filter in
this same frequency range is certainly possible and allowable.
In other words, measurement in a limited frequency range only
allows us to make conclusions in that same range; in fact, the
situation is slightly worse than that, because the edges of the

range may also be - .-. to question.
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SUMMARY

For a minimum-phase filter, the phase shift g(f) can be found
from the attenuation «(f) by means of two cascaded fast Fourier
transforms, once the logarithmic singularities in o(f) have been
subtracted out and handled analytically. A partial accuracy
check is automatically built into the procedure, because the real
part of the output should agree with the given input; the
imaginary part of the output is the desired minimum-phase result.
Tais Fourier approach yields the entire phase curve for all
frequencies, not just a point-by-point output, as a Hilbert
transform numerical integration would give.

In order to use this procedure, the attenuation must be
neasured for all frequencies, or at least for large enough and
small enough frequencies that the asymptotic behavior is well
developed and obvious. A plot of the attenuation {(or decibel
gain) on a logarithmic frequency abscissa is recommended for this
purpose, because the filter magnitude characteristic should
approach a straight line with a decay equal to a multiple of
6 dB/octave in the neighborhood of zero and infinite frequencies.
Failure to make a complete set of measurements will lead to the
need for extrapolation and the attendant errors that can occur
with such a procedure, as illustrated here. Furthermore,
statements about the minimum-phase behavior of a particular

filter can only be made (with)in that same frequency range.
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APPENDIX A. PRINCIPAL VALUE INTEGRAL EVALUATION

Through a change of variable, a principal value integral can

be put in the form

b
I-fdti%l, where g(0) # 0 . (A-1)
-b

Limit b can be finite or infinite. (For example, (8) fits this
form when we let g(t) = G(x-t)/n.) Although (A-1l) is a principal

value integral, it can be expressed as (ordinary integrals)

b b b
g _(t) g _(t)
I = j at 2— - zj at 2 — - j d—% [g(t) - g(-t}] ,  (A-2)
~b 0 0

where go(t) is the odd part of g(t); see definition (5). This
form can be used for numerical evaluation whether b is finite or
not. If b is infinite, the integrand of the last integral in
(A-2) maintains the same decay with t as original integral (A-1).

This is not true of the sometimes recommended alternative form

b
I = j at lt) = g(0) (A-3)
-b

which decays very slowly with t, although it is finite at the
origin t = 0. However, another alternative that advantageously
uses this subtraction device is given later in (A-11).

A simple example of (A-1)-(A-2), for b finite, is furnished

by the integral
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b b
I = f dt sza%&i - zf dt §12%L£1 , (A-4)
-b 0

the latter of which has a well-behaved integrand at t = 0.

DERIVATIVE EVALUATION
In general, the last integrand in (A-2) behaves as

2t = 9(=t) 5 gr(0) as t a0 . (A=5)

Therefore, in order to use (A-2), it is necessary to have g’(0).
1f all we can easily evaluate is g(t), and not its derivative
g’(0), a good approximation is available through the following

device. We know that g’'(0) is approximated by

g({e) - g(-¢)
2¢

for small ¢ . (A-6)

However, if € is too large, this is a poor approximation, whereas
if ¢ is too small, round-off errors cause numerical stability

problems. But we know that

g(e) - g(-¢€) 1 2

2¢ =9'{0) + ¢

g’’’ (0) €° + 0(24) as ¢ » 0 . (A-7)

So, letting F(e) be the left-hand side of (A-7), we have, to

second order,

1cz

Fle/2) = A, + A, c2/4

F(e) = Ao + A
where Ao and Al are unknown . {A-8)
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The desired unknown follows easily from (A-8) as

A =4 F(e/zg - F(€) -

o g’'(o) . (A-9)

This procedure is an extrapolation to the limit; it uses ¢/2 as
the smallest argument of F.

A program for the evaluation of g’(t) at general t is
furnished here in BASIC; it requires specification of a tolerance
Tol in line 70 of the function subroutine FNDerivl.

10 INPUT T
20 Derle«FNDerivl(T)

30 PRINT T,Derl ! t,g’(t)
40 END
50 !

60 DEF FNDerivl(T)
70 Tol=1_.E-6

~g’'(t) via extrapolation
tolerance

Gt gum g

80 E=,2 epsilon (start)
90 E=E*.5
100 vi=v2

110 V2=(FNG(T+E)~FNG(T-E))/(2.*E)

120 v=v2+(V2-V1)/3.

130 IF ABS(V2/V-1.)>Tol THEN 90

140 RETURN V

150 FNEND

160 !

170 DEF FNG(T)

180 RETURN EXP(T) ! example exp(t)
190 FNEND

An application of this program to the exp(t) example in line 180,
at argument t = 1.1, yielded an error of -7.8E-13.
1f we instead kept terms to fourth order in (A-7), an

extension to (A-8) yields approximation
g'(0) = zi[64 F(§) - 20 #(§) + Fle)] . (A-10)

This procedure uses €¢/4 as the smallest arqument of F.
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AN ALTERNATIVE SUBTRACTION PROCEDURE

We now express (A-~1) in the form

b

a
I = f dt 91%1 - f dt ﬂi§i + f dt ﬂi%i , (A-11)
-b R

where limit a is chosen for convenience and R is the union

(-b,-a) v (a,b). Then, as done in (A-3),

a
I = I gt 4lt)

-a

- g(0) (t) )
- + j at L2, (A-12)
R

These are both ordinary integrals now. The first integrand is
finite at t = 0, with value g’(0), while the second integrand

maintains its original decay as x > +b.

SECOND DERIVATIVE EVALUATION

The procedure presented in (A-5)-(A-9), for the approximate
evaluation of first derivative g’(0), can be extended to the

second derivative g"(0) as follows. We know that

ale) + 9(=8) o g(0) + 3 g7(0) e? + o(e?) ase-s 0. (13
Therefore,
gle) + g(=e) = 29(0) _ gw(q) 4 o(e?) . (A-14)

el
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Letting D(e) be the left-hand side of (A-14), we have, to second

order,
D{(g) = Bo + B1 ez
2 where Bo and B1 are unknown . (A-15)
D(e/2) = B+ B, £ /4
o 1
The desired solution is
Bo - 4 D(S/Z; - D(€) =~ gn(o) . (A-16)

This is an extrapolation to the limit; it uses g/2 as the
smallest argument of D. A program for the evaluation of g"(t) at
general t is given below in BASIC; it requires specification of a
tolerance Tol in line 70 of the function subroutine FNDeriv2.

10 INPUT T
20 Der2=FNDeriv2(T)

30 PRINT T,Der2 ! t,g"({t)

40 END

50 !

60 DEF FNDeriv2(T) ! ~g"(t) via extrapolation
70 Tol=1.E-6 ! tolerance

80 E=.2 ! epsilon (start)

90 G2=2.*FNG(T)

100 E=E*.5

110 V1=Vv2

120 V2=(FNG(T+E)}+FNG(T-E)-G2)/(E*E)
130 v=v2+(V2-V1)/3.

140 IF ABS(V2/V-1.)>Tol THEN 100

150 RETURN V

160 FNEND

170 !

180 DEF FNG(T)

190 RETURN EXP(T) ! example exp(t)
200 FNEND

An application of this program to the exp(t) example in line 190,

at argument 1.1, yielded an error of 1.6E-11.
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APPENDIX B. FOURIER TRANSFORM OF GENERALIZED FUNCTION

We are interested in finding the Fourier transform of the

generalized function

exp(-at) Ul T)

- , a>?o0o, (B-1)

where U(t) is the unit step function. Letting w = 2nf, the

integral of interest is
d<t .
I = J ~= exp(-at) U(t) exp(-iwt) =
dx .
- I = [exp(~-at) - 1 + 1} U(T) exp(-iwt) =

dr
-

{1 - exp(~-at)) expl-iwt) + I é% U(t) exp(-iwt) =

L]
f
oOc—— 8

- - ln(s—%;ig) - [i% sgn[ig] + 1n 5% + C'] - (B-2)

= - 1n(a + iw) + In(iw) - i% sgn{w) - ln|w| + 1n(2Rr) -~ C’. (B-3)

In (B-2), we used ([4; page 334, 3.434 2] and [6; page 43, row 3,

column 3, with m = 1], But since

in/2 + Injw| for w> 0
ln(in) = } + i2nn =
-in/2 + In|w| for w < 0
- i% sgn{w) + Injw| + i2nn , n integer , (B-4)
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we can express (B-3) as
I = - 1ln{(a + iw) + C , where C = 1n(2n) -~ C' + i2nn . (B-5)
Thus, we have the Fourier transform pair
EﬁEL%EIl U(t) <> - 1n(a + i2nf) + C , (B-6)

where C is an arbitrary constant. The reason for the presence of
C is that the generalized function % U(t) is indeterminate within
an additive arbitrary multiple of the delta function 8(<T).

For the example in (33) of H(f) = 1/(1 + i2nrf), we have
Q(f) = In(l + i2nf). Application of pair (B-6), with a = 1, to

(39) then yields causal function

g(t) = - 5’-‘-%:—1-)— ult) . (B-7)
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APPENDIX C. HILBERT TRANSFORM MANIPULATION

It was noted below (45) that the Hilbert transform of
attenuation a(f) encounters integrals with logarithmic infinities
and must be handled more carefully. This problem is treated in
[{3; pages 206 -~ 208], by dividing the attenuation by a factor
that is quadratic in f, rather than linear. 1In current notation,

that result is [3; (10-67)]
+@

£ a(u) _
B(f)-ijduuznfz. (c-1)

If we utilize the property employed in [3; page 208, line 2},

namely that attenuation «(f) is even, we can develop (C-1) as

a(u)
B(f) = J 2 -
0
4o
1 1 1
- -3 J du af(u) [f — + f + U) = (C-2)
0
4+ +®
1 a(u) 1 afu) _ B
" T J du 74y " I du v (€-3)
0 0
+® 0
N _efu) 1 al-v) _
n J du g " w J dv ¥+
0 -
4o
1 _alu) -
._nfduf_u H{a(£)} . (c-4)
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The step leading from (C-2) to (C-3) presumes that both of

the latter integrals converge separately, which need not be the
case for attenuations «{f); this is the reason for the quadratic
denominator adopted in (C-1), which guaranteed convergence of
that integral.

Rather than using Hilbert transforms and having to employ the
method of (C-1), we have resorted instead to the use of Fourier
transforms, as outlined in (46). Of course, a similar problem
arises there, as mentioned in the sequel to (51). The method of
circumventing the difficulty, in the Fourier approach, is to
subtract out the singularities and handle them analytically, as
described in (54)~(57).

The justification of this procedure, using modified Hilbert
transform (C-1) as a starting point, is as follows. Express
given attenuation «(f) in two parts, as in (54), where residue
az(f) has a convergent Hilbert transform integral

4>

a,(u)
[ aw 2 - Blay6)) for a1l £ . (c-5)

-0

The phase shift B8(f) corresponding to attenuation «(f) is then

given by sum (56), where, following (C-1),

e al(u)

£
g,(f) = £ [ au 51— (c-6)

u - £
-

and B,(£) is available as the negative of (C-5). The proof of
this last claim follows immediately from the derivation in

(C-1)-(C-4) if we replace a(f) and B(f) everywhere by az(f) and
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Sz(f), respectively. This is legitimate because the existence of
(C~5) for residual attenuation az(f) now allows the separation
into two convergent integrals, as done in (C-3).

We do not actually use (C-5) or (C-6). Instead, (C-6) is
accomplished by using known closed form attenuation/minimum-phase
pairs for al(f) and 61(f), while (C-5) is replaced by the Fourier
approach given in (46), with az(f) and ﬁz(f) substituted for «(f)
and B(f), respectively. The inverse Fourier transform integral
in the top line of (46), but now in terms of az(f), is
convergent.

(For interest, an example of the application of (C-6) is
afforded by attenuation-phase pair (51). This fact is

immediately verified by use of [4; 4.295 8]).)
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APPENDIX D. EXAMPLES OF ATTENUATION/MINIMUM-PHASE PAIRS

In this appendix, we list a few attenuation/minimum-phase
pairs that can be used in the subtraction procedure presented in
(54)-(57) to eliminate the divergent integrands encountered. For
convenience of notation, we employ the Laplace tr..sform of the

impulse response, namely

4+
L(s) = J dt exp(-st}) h(t) , {D-1)
0

where we have specifically limited consideration to causal

filters. The connection with the Fourier transform (1) is
H{f) = L(i2nf) . (b-2)

In the following, a, b, and ¢ are real positive constants, and

w = 2nf.

EXAMPLE 1:

L(s) = S <

2

a(f) = % In(a“ + wz) - 1In(c) , B8(f) = arctan(w/a) . (D-3)

In the limit as a » 0+,

«(£) = Injw| - In(c) , B(f) = 3 sgn(w) . (D-4)
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EXAMPLE 2:

s
+ a '’
1 2
«(f) = 3 1n(a” + &%) - Injw| - In(c) ,
B(f) = arctan{w/a) - % sgn(w)
EXAMPLE 3:
c s
Lis) = T v ars + &)
o(f) = % 1n(a’ + w?) 4 % In(b? + w?) - Injw| - ln(c) ,
B{f) = arctan(w/a) + arctan(w/b) -

n
3 sgn(w)

This attenuation reaches a minimum at « =

tke phase goes through zero.

EXAMPLE {4:

L(s) =

c
(s + a)2 + b2
a(£) = % inl(a? + (w + b)) + % inla? + (0 - b)) - 1n(c) .,
BIf) = arctan(9 — b] + atctan(9—§~2] .

52
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APPENDIX E. NUMERICAL EVALUATION OF (46)

We repeat here the cascaded Fourier transform operations

listed in (46):

q(t) = F la(f)} , (E-1)
q(t) = 2 q(t; U(T) , (E-2)
a(f) + i B(f) = F{qg(T)} . (E-3)

We limit consideration to the case where attenuation a(f) is
even, which is the typical practical situation. Also, we weight
the inverse Fourier transform in (E-1) by real symmetric window
W(f), which is zero for |f| > MA. We then get approximation

4+

g, (t) = I df exp(i2nft) alf) W(E)

4+
= 2 Re J df exp(-i2nft) alf) W(E) =
0
MA
= 2 Re j af exp(-i2nft) olf) W(E) =
0
M
= 2 Re ) s, 0 exp(-i2rn4T) a(ns) W(nsd) = gp(t) . (E-4)
n=0

where we sample in frequency f with increment A. We also use
some integration rule like trapezoidal or Simpson; for example,

the trapezoidal rule has 5, = 1, except for s_ =85, = 1/2.

o] M
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The approximation gb(t), defined by the bottom line of (E-4),

has period 1/8 in t. Therefore, we compute it at the points
for 0 < m <N -1, (E-5)

which cover a full period of g, (T). There follows

M
gb[ﬁ%] = 24 Re %;% s, exp(-i2nnm/N) a(nd) W(ns) , (E-6)

which is an N-size fast Fourier transform of M + 1 data points.
Any surplus points can be collapsed, if desired, without loss of
accuracy; see [7; pages 4 - 5], for example.

Operations (E-2) and (E-3) can be combined to read

+@
Q(E) = alf) + i B(E) = 2 I dt exp(-i2nft) g(t) .  (E-7)
0

Because all we have available is approximation gb(r) from (E-4),

we adopt the following approximation to Q(f), based on (E-7):

+@o
Qa(f) = 2 J dt exp(-i2nft) g, (1) =
0
.5/8
52 j dt exp(-i2nft) g (1) = (E-8)
0
N/2
~ 1 . m m
223 va exp(-i2ntgh) gy (73) = 9l E) (E-9)
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where Yn is an integration weight. The integral in (E-8) was
limited to .5/48 in 1, because approximation gb(t) in (E-4) is
only available up to that limit without aliasing.

The period of the final approximation Qb(f) in (E-9) is N4 in

f. Therefore, we limit its computation to the values
2 gf% m
Qb(nA) - N3 _— Yo exp(-i2nnm/N) gb(ﬁﬁ) for 0 < n < N-1 . (E-10)

This can be accomplished as an N-size fast Fourier transform of
N/2 + 1 data points. The final approximation to desired phase
B(f) in (E-7) is available as the imaginary part of (E-10), at
frequencies £ = nd. 1In addition, the real part of (E-10) should
be in very good agreement with specified attenuation values
{a(nd) W(na)} used in (E-6); this serves as an accuracy check on
the complete procedure. Equations (E-6) and (E-10) are the final
results. Strictly, (E-6) should be applied only to the residual
attenuation az(f) defined in (55); then (E-10) furnishes an
approximation to az(f) + i sz(f). A program in BASIC for the
Hewlett Packard 9000 computer, for the procedure given above, is

presented below.

55




QW P ee 0 0 NN B O R e
DI OODIP O DID

-t pua pat st

TR 8667

NUSC TR 8667, FOURIER FROCEDURPE AFPLIED
TQ REAL EVEM FUHCTIOH OF FREQUENCY

Deltaf=5, I SAMPLING INCPEMEHT IM FREQUENCY
Fmax=908. I MAXIMUM FREQUENCY

H=16384 | SI2E OF FFT

A=260. I FILTER PARAMETERS

B=330, t  FOR

C=-.55E8 | EXAMPLE C

COM A,B,C

REDIM Cos(A:H/4)> ,X<(OB:N-1),Y(A2HN-1)
DIN Cos(4R96),%(16384),Y(16384),Realeven(25080),Phase(6:100)

DOUBLE N,M,Ns,Ms,H2,M2 ! INTEGERS

T=2.*FI/N

FOR Hs=0 TO N-/4

Cos(Ne)>=COS(T*HNs)> ! QUARTER-COSIHE TABLE
HEXT HNs

H=Fmax/Deltaf
REDIM Realeven(®:M)

CALL Input_real_even(Deltaf,Fmax,Realevent(*)) | RESIDURL
MAT ®=(8.)> ! ATTERUATION RLFHA2
MAT Y=(0.>

A(B1)»=,5%Realeven(d)
Me=M MODULO W
#{Mg)=,5%Realeveniit)
FOR Hs=i TO M-1

Mz=He MODULQO M ! COLLAPSING

N{Ms)r)=4A(Mz)+Realeven(Ns)>

NEXT Ns

CALL Fft14C(N,Cos(®),XC(%),Y(%)) ! FOURIER TRAHSFORNM

N2=N-2 ' INTO TIME DOMAIN
GINIT

PLOTTER IS "GRAPHICS"
GRAPHICS ON
WINDOW ~-M2,N2,-6,2
LINE TYPE 3
GRID H-8,1
PRINT "FOURIER TRANSFORM (TIME DOMAIN)"
FOR Hs=-H2 TO N2
Me=MNs MODULO M .
FLOT Hz,LGT(ABS(X(Ms>>+1.E-99) ! TIME DOMAIN FUHCTION
MEXT Ns
PEMUP
PAUSE
MAT Y=(B8.)
T=4,/H ! 2 Deltaf % 2 / (N Deltaf)
FOR Ms=8 TO N2
(M =Y (MO T | DOUBLE FOR POSITIVE TIME
HEXT Ms
X(@)>=X(B>%.S
RCH2)=X(N2)*.5
FOR Ms=H2+1 TO N-1{

X{Ms)=0. !} ZERO FOR NEGRTIVE TIME

HEXT Ms

CALL Fft14(N,Cos(*),X(%) Y(*)) !' FOURIER TRAHSFORM
Me2=mMx*2 ! INTO FREQUENCY DOMAIN
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560
579
580
390
€00
619
28
€30
640
6508
660
670
€80
€90
7a8
716
720
v3a
749
758
760
770
789
790
209
818
szo
839
240
850
860
grve
gse
899
Q08
910
920
938
949
959
960
Ire
989
298
1089
iet1e
1929
1830
1040
{ase
1960
1870
1980
1690
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GCLERR

WINDOW @,M2,~-%,1

LINE TYPE 3

GRID N/16,.2

PRINT "ORIGIMAL INPUT (FREQUENCY DOMAIN>"

FOR Ns=0 TO MINM,N2

PLOY HNHs,Realeven(Ns) ! ORIGINARL INPUT

HEXT Ns

PEHUP

PAUSE

LINE TYPE ¢

FOR Ns=8 T0 M2

FLOT Ns,X{(Ns) ! F-T-F APPROXIMATION

NEXT Ns

PEHUP

PAUSE
DATA -38.6,-48.2,-54.8,-60.4,-76.2,-82.1,-94.5,-183.8,-109.1,-117.1
DATR -124.1,-134.0,-143.1,-152.9,-162.1,~-172.4,179.1,171.1,164.2,157.9%
DATA 152.8,147.1,142.8,135.8,131.9,128.7,122.8,118.7,115.1,110.6
DATA 105.9,1083.4,102.8,99.9,98.6,93.8,93.1,91.2,89.6,89.5
DATA 89.6,89.6,89.2,88.1,85.6,84.5,82.0,81.1,79.0,74.7
DATA 71.4,66.5,61.3,55.1,48.1,41.6,34.0,29.3,22.0,16.1
DATA 12.2,5.7,2.4,-3.1,-6.5,-11,3,-16.2,-21.2,~25.7,~29,7
DATA -33.4,-37.0,-48,7,-43.5,-47.0,-49.5,-51.6,-54.1,-56.2,-59. 4
DATA -£1.8,-62.4,-64,2,-66,7,-68,7,-71.4,~-74,6,-78.1,-81.4,-83.8
DRTA -88.7,-91.3,-95.06,-98.7,-183.1

READ Phase(*) ! MEASURED PHASE IN DEGREES
FOR Hs=22 TO 109

Phase(Ns)=Phase(Ns)-360. ! UN-WRAPPING OF FHARSE

NEXT Ns

MAT Phase=Fhase*(-P1-/180.) ! MERSURED PHASE IN RADIANS

T=2.*Pl#Deltaf
FOR Ns=8 TO N2

W=T*¥Ns

Phaseapp=RTHC((H-BY/A)+ATHC((W+B)/A> | PHASE BETAR1 OF APFROX.
X(Hs)=Phaseapp+Y(Hs) ! CALCULATED PHASE IN RADIANS:
HEXT Hs ! BETA = BETA1 + BETAZ

GCLEAR

WINDOW ©,180,8,PI*1.25

LINE TYPE 1

GRID 20,PI%,25

PRINT "PHASE (FREQUENCY DOMAIN)"

FOR Ns=9 TO 180

PLOT Hs,X(Ns) | PHRSE VIA FOURIER PROCEDURE
HEXT HNs

PENUP

LINE TYPE 3

FOR Ns=6 TO 100

PLOT MHs,Phase(Hs>-Ns#*,0448 ! MEASURED PHASE WITH
MNEXT Hs t  TIME DELRY CORRECTICN
PENUP ! OF 1.43 MILLISECONDS
PRUSE

END
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1120 SUR Ff.14<(DOUBLE N,REAL Cos/%),R(%¥>,Y(%)>) | N<(=2~14={€6384; @ SURS
1119 DOUBLE Log2n,MN1,N2,H3,N4,J,K ! INTEGERS < 2~3! = 2,147,483,648
1129 DOUBLE 11,12,13,14,15,16,17,18,19,110,111,112,113,114,0L¢0:13)>
113@ IF H=1 THEN SUBEXIT

1148 IF H>2 THEN 1220

1150 A=X(BY+K(1)

11€0 X(1)=X(3)>-X(1)

1170 X(@>=R

1180 A=Y(BY+Y (LD

1196 Y<1O0=Y(B>-¥Y(1)

1200 Y(B>=H

1210 SUBEXIT

1229 A=LOGC(HY /LOG(2.)

1239 Log2n=R

1240 IF RBS(A-Log2n)<1.E-8 THEN (270

1259 PRINT "H ="gN;"IS NOT AR POWER OF 23 DISALLOWED."

1260 FRUSE

1278 Ni=H-4

1280 H2=N1+1

1299 N3=H2+1

1300 Ha=H3+H1

131@ FOR Ii={ TO Log2n

13280 12=2~C(Log2n-11>

1330 13=2#%12

1349 14=1,13

1358 FOR 15=1 TO I2

1368 I6=CI5-1)%14+1}

1270 IF 16<=H2 THEN 14190

1380 Al=-Cos(H4-16-1)
1398 A2=-Cos(I6-N1-1)
1400 GOT0 1430

1410 At=Cos(16~1)
1420 AR2=-Cos(N3-16~-1)
1430 FOR 1728 TO MH-13 STEP 13
14408 18=17+15-1

1450 19=18+12

14€90 Ti=XC18)

1478 T2=X(1%)

1480 T3=YC(18)

1439 T4=YC(I9)

1500 A3=T1-T2

151¢ R4=T3-T4

1520 X(I8)=T1+7T2

1530 Y(18)=T3+T4

1540 XCI9=A12A3-A2+A4
1556 Y(I9>=A1*A4+A2%A3
1560 NEXT 17
1579 NEXT 15
1580 NEXT 11
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1590 11=Log2n+1

1680 FOR I2=1 TO 14

1610 LCI2-1>=1

1629 IF 12>Log2n THEH 16490

1630 L{l2-1)=2~(11~12)

1649 HEXT 12

1650 K=0

1660 FOR It=1 TO LC13)

1670 FOR 12=11 TO L<12> STEP L13
1€80 FOR I3=12 TO LC(11)> STEP L<C12>
1698 FOR I4=13 7O L(1@> STEP L(11>
1700 FOR IS5=]4 TO L(9) STEP L(i@>
1718 FOR 16=1I5 TO L(8) STEP L(9)
1720 FOR I7=16 TO L{(7> STEP L(8>
1730 FOR I8=17v TO L(6> STEP L(7)
1740 FOR 19=18 TO L(S> STEP L(6)>
1750 FOR 1108=19 TO L(4) STEP L(5)
1760 FOR I11=11@ TO L(3> STEP L(4)
1770 FOR I12=I11 TO L<(2> STEP L(3)
1780 FOR I13=112 7O L<(1> STEP L<(2)
1799 FOR I14=113 TO L<(B®> STEP L(1D
1800 IJ=114-1

1810 IF K>J THEN 1880

1828 A=X (K>

1830 XC(KI»=XCID

1840 X(J>=A

1850 A=Y (KD

1868 YCKI=Y (DD

1eve Y¢(J>=R

1880 K=K+1

1890 NEXT 114

1969 NEXT 113

1910 NEXT I12
1920 MEXT 111
1930 HEXT 110
1940 MEXT I9

1959 NEXT I8
19¢0 HEXT 17
1970 NEXT 16
1988 NEXT IS
199¢ MEXT 14
2000 HEXT I3
2010 NEXT 12
2820 HEXT It
2630 SUBEND
2048 !
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29450 SUB Input_real_even(Deltaf,Fmax,Realeven(®))
2060 DOUBLE Ns !  INTEGER
2078 ALLOCRTE Db(é6:1809) i 30:900 HZ

2080 DATA 41.3,44,.3,46.1,47.6,49.9,51.4,52.9,54.4,54.8,56.3
z090 DATA 57.0,57.4,57.9,58.6,59.9,59.1,59.0,58.9,58.9,58.8
2100 DATA S8.6,58.1,58.2,58.1,58.0,57.9,57.8,57.2,56.9,56.7
2110 DPATA S6.€,56.4,56.3,56.2,55.7,55.6,55.4,55.0,54.9,55.2
2120 DATA 55.2,55.7,55.7,56.1,56.1,56.6,56.9,57.5,58.3,58.6
2139 DATA 59.98,59.7,60.3,60.7,60.9,61.1,61.1,61.2,61.0,60.9
2140 DATA 60.7,68.6,60.4,60.2,60.0,%59.9,59.6,59.4,59.3,58.7
2150 DATA 52.5,%8.3,57.8,57.5,57.3,57.8,56.7,56.3,56.1,55.9
2169 DATA 55.7,55.5,55.6,55.6,55.4,55.3,55.4,55.3,55.6,55.3
2179 DATA 55.4,55.9,55.0,55.0,54.8

2180 REDIM Db(6:100)

2190 READ Db(+)

2299 MAT Dhb=Db+7:186.) { MERSURED DB GARIN
2210 REDIM Db(6:180)>

2220 FOR Ns=101 T0 180 1 AUGHMENTED DB GRIN
2239 F=DeltafxNs

2240 Tit=(F=-5508.)>+,04

2250 T2=(F-580.)%,04

2269 Db(Ns>»=154,.8-5.*EXP(-T1#T1)-5.#EXP(-T2%T2)
2270 NEXT HNs

22809 MAT Realeven=(@.)
2298 coM A,B,C

2300 A2=A*A

2319 B2=B*B

2320 C2=Cx(_

2339 Di=CA2+B2)*(R2+B2)
2340 D2=2.%(AR2~-B2)

2358 T=2.%*PI*Delvaf

23609 FOR Ns=6 TO 180

2370 W=T*Ng

2380 WZ=hixlW

2398 Wa=U2=W2

2400 P=C2%W4/(D1+D2¥W2+UW4)

2419 Attenapp=-.5*L0OG(P) !  APPROX. ATTEHN. ALPHAL
2420 Atten=Db(Ns>- (-8.686) 1 ATTENUATION ALPHA
2438 Peraleven(Hs)=RAtten-Attenapp ! RESIDUAL ATTEN. ALPHAZ

2448 NEXT HNs
2450 SUBEND
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ABSTRACT

The response of equispaced arrays, either linear, planar, or
volumetric, to distributed spatial fields, typically encounters
integrals which involve the kernel sin(Mx)/sin(x) or its square.
Since this kernel oscillates rather fast with x for large M and
does not decay with x, numerical integration of such functions
can be very time consuming. By resorting to Parseval’s theoremn,
such integrals can be significantly simplified, requiring only
the Fourier transform of the complementary part of the integrand.
This procedure is investigated and applied to several typical
examples; programs for the examples are also included.
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EVALUATION OF INTEGRALS AND SUMS

INVOLVING [sin(Mx)/sin(x))"
INTRODUCTION

The response of an equiweighted equispaced line array to a
distributed field involves the kernel sin(Mx)/sin(x) or its
square, depending on whether the voltage or power response,
respectively, is of interest [1,2]. Numerical evaluation of such
integrals can be very time consuming for two reasons: this kernel
oscillates quickly with x for large M, and it does not decay with
Xx. This necessitates fine sampling in x and large integration
regions, both of which can lead to a significant computational
burden, especially for two-dimensional or three-dimensional
arrays. The object of this report is to give an alternative
numerical procedure that can be very advantageous in some cases,
and, in fact, leads to closed forms for some examples.

The procedure is also applied to summations involving the
same kernel. 1Its utility depends on the rate of decay of the
complementary part of the original integrand, as compared with
the Fourier transform of this component. 1In any event, an
alternative is presented for the user to consider in any

numerical investigation.
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GENERAL APPROACH
For arbitrary function g(t), define its Fourier transform as
Glw) = I dt exp(-iwt) g(t) . (1)

(Integrals without limits are over the range of nonzero
integrand.) Then Parseval'’s theorem states that the following

two alternative integrals are equal:
v-jdt gtt) h*(t) = 22 [ do 6(w) B (W) . (2)

Here, H(w) is the Fourier transform of h(t). Now, if H(w) takes
on a noticeably simpler form than h(t), then the second integral
in (2) can offer an attractive alternative to the first integral

in (2). That will indeed be the case here.
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CASE 1

For integer M > 1 and constant y > 0, consider the special

choice of h(t) as

M-1
- sin(Myt) - _ -
hl(t) sin(yt) explivyt(2n+1-M)]
n=0
M-1
- Z' exp(iytm) , (3)
m=]1-M

where the prime on the latter sum denotes skipping every other

term. Then the Fourier transform, according to (1), is

M-1
8(w - ym) . (4)

Hllw) = 2n
M=]-M

Substitution of (3) and (4) in (2) yields

M-1

sin(Myt) '
v, = J dt g(t) S—E}?}:)L - Z G(ym) . (5A)
m=1-M

This result indicates that if G(w), the Fourier transform of
g(t), can be evaluated, then the t integral in (S5A) is given by a
finite sum of equispaced samples of G(w) at increment 2y. The
(complex) function g(t) in (5A) is arbitrary, except that the
integral must converge. When G(w) cannot be analytically
evaluated, then proper application of a fast Fourier transform
procedure to g(t) can be tailored to yield precisely the equi-
spaced samples required for the right-hand side of (5A); this

technique and a program is detailed in appendix A.




TR 8689

An alternative more explicit form of (5A) illustrates the

calculations required:

((M=-1)/2 )
G(2yn) for M odd
n=(1-M)/2
Vl - . (58)
M/2-1
G(y+2yn) for M even
\ n=-M/2 )

1f function G(w) is even in w, then (5A) simplifies to

4 M__l \
G(0) + 2 }E:' G(ym) for M = 1,3,5,...
m=2
v1 - > . (6)
M-1
2 j{:' G(ym) for M = 2,4,6,...
\ m=1 J

A program for (6) is given in appendix B.

CASE 2

For integer M > 1 and constant vy > 0, consider the

alternative special choice of h(t) as

2 M-1

- [sin(Myt - . _ -
h, (t) [ETE%?%TL explivt(2n-2k)) (7R)
n,k=0
M-1
- ;Z: (M - |m|) exp(i2ytm) , (78B)
m=]1-M
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where we used (3). There is no prime on the summation in (7B)
because all terms from 1-M to M-1 are to be included. The

Fourier transform of hz(t) is

M-1
Hz(w) = 2n }E: (M - |m|) 8(w - 2ym) . (8)
m=1-M

The use of (7A) and (8) in (2) yields

M-1

2
in(M
v, = I at g(t) [SRAxEl]” . g (K - |m]) G(2vym) . (9)
m=1-M

Again, the integral of interest is given by a finite sum of
samples of the Fourier transform of g(t), also at increment 2y

in w. The fast Fourier transform technique and program presented
in appendix A is relevant here also. 1I1f G(w) is even in w, then

we can express (9) as

M-1
v2 = M G(0) + 2 }E: (M - m) G(2ym) for all M > 1 . (10)
m=1

A program for (10) is given in appendix B.

CASE 3

For arbitrary weights {wm} and frequencies {ym}, with

h3(t) = EE: Yo exp(iymt) ' (11n)
m

then we have a generalization of (3), with
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H3(w) - 20 EE: wm $(w - vm) . (11B)
m

(Summations without limits are over the range of nonzero

summand.) Use of these expressions in general result (2) yields

vy o= j dt g(t) Z o exp(~iy t) = Z W Gly,) . (11C)
m

m

Again, the Fourier transform of g(t) is required, but now at

general arguments {Ym}.

CASE 4

Function hz(t) in (7) is a special case of the weighted array

power response

EZ: Wy exp(-i2ytk)

k

h4(t) =

2
= Ez: ¢(m) exp(-i2ytm) , (12A)
m

where ¢(m} is the autocorrelation of the weights:

¢(m) = Z Wy w;_m - ¢"(-m) . (12B)
3

The integral in (9) is then generalized to
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v, I dt g(t) hy(t) = J at g(t)

2
Z vy exp(-i2vytk) -
k
= Z ¢(m) G(2ym) , (13A)
m

upon use of (12A), where g(t) can be complex and nonsymmetric.
Thus, integral \ requires the autocorrelation of weights {wk}
and the Fourier transform of g(t) for its evaluation. The
earlier result in (9) corresponds to weights Wy = 1 for
1 <k <M,

When function g(t) is real (but possibly nonsymmetric) and

the weights are real, (13A) can be simplified to

Vo = ¢(0) G (0) + 2 }E: $(m) G (2vym) , (13B)
m>1

where Gr(w) is the real part of Fourier transform G(w) in (1).

A program for (13B) is given in appendix B.
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EXAMPLES

EXAMPLE A

The first example of interest is

1
g (t) = , B> 0 . (14)
a (-2 + 8%
Its Fourier transform is
G, (w) = % exp(-ipw-Blw|) , (15)
for which the real part is
G, (w) = % cos(uw) exp(-Blw]) . (16)

Since integral (5) is obviously real for example (14), we

obtain
M-1
dat sin(Myt) E !
\'4 = > - G__(ym) . (17)
la J (t_”)z + 62 sin(vt) L ar

Substitution of (16) in (17) yields the closed form result

v. - J dt sin(Myt) _
la (t_”)z . B2 sin(vyt)
C1 El (1 - Ez) for M even
2n
= 8D|Em+3 Cm-1 ~ Emy1 Cmer * 1 » (18)
= (1 -E,) for M odd
2 4
where
E, = exp(-Bym) , C_ = cos{(uyym) , D =1 - 2 E, C, + E, . (19)
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A program for (18) and (19) follows; it is written in BASIC for

the Hewlett Packard 9000 computer.

10
20
30
40
50
60
70
80
90
100
110
120
130

INPUT M,Beta,Gamma, Mu ! Beta > 0,
B=Beta*Gamma

C=Mu*Gamma

E=EXP(-B*2)

IF (M MODULC 2)=1 THEN 80
F=COS{C)*SQR(E)*(1-E)

GOTO 90

F=,5- _ 5%E*E
A=E*COS(C*(M-1))-COS(C*(M+1))
A=A*EXP(-B*(M+1))+F
Via=A*2*PI/(Beta*(1-2*E*COS(C*2)+E*E))
PRINT Via

END

Gamma > 0

Wwhen we instead substitute (14) and (16) in (9), there

follows

v - J at [s:}n(Mxt)]z .
2a (t_”)z + 52 sin(yt)
M-1
- % (M - |m]) cos(2xym) exp(-2Bvy|m|)
m=]1~-M

This finite sum can be written in compact form by use of

{3;

Then

0.113). Namely, define here

E = exp(-28y) ., C = cos(2py) , S = sin(2uy)

E, = exp(-28vYM), C

M = cos(2uyM), S

M
2 2

M

= gin(2uvyM),

10

(20)

(21)
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v - J dt [sin(Myt)]2
2a (t_”)z + B2 sin(yt)
2nM E
- EE[EA - -5((c B -2ENL-E, C,) +SAE, Su)] . (22)

A program for (21) and (22) follows.

10 INPUT M,Beta,Gamma,Mu ! Beta > 0, Gamma > 0

20 Tb=2*Beta*Gamma

30 Tm=2*Mu*Gamma

40 E=EXP(-Tb)

50 A=E*E

60 B=l+A

70 A=1-A

80 C=COS{Tm)

90 D=B-2*E*C

100 Em=EXP(-Tb#*M)

110 T=(C*B-2*E)*(1-Em*COS(Tm*M))

120 T=T+SIN(Tm)*A*Em*SIN(Tm*M)

130 T=.5*M*A-T*E/D
140 V2a=T*2*PI1/(Beta*D)

150 PRINT V2a

160 END

EXAMPLE B

The next example *o be considered is
g, (t) = — alet) . g0, 0. (23)
(t=p)” + B

Since gb(t) is a product of two functions, its Fourier transform
Gb(w) is given by a convolution of the individual transforms.

The Fourier transform of the first term in (23) has already been
encountered in (15), and the Fourier transform of the second term
in (23) is a rectangle located on interval (-«, o) in w.

Therefore, Gb(w) is given by convolution

11
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W+a

Gpl0) = 7o f du exp(-ipu-glul) . (24)
w-a
Since gb(t) in (23) is real, we need only evaluate the real part,

Gbr(w), of Gb(m). With the aid of auxiliary variables

C, = coslww), S, = sin(pw), €, = cosh(Bw), S, " sinh(Bw),

C, = coslua), S = sin(ua), €, = cosh(Bea), 5 = sinh(B«),

17 & G (B Co

vS)+85,8, (pC + 8B5S,

By =S C,  (BC,-uS,) +C S (ucC, +BS,), (25)

we find that Gbr(m) is given by

A
€
A
R

B - exp(-Ba) B, for 0 <
n

— {26)
u5(52+u2)

Gbr(w) =

A
€

exp(-Bw) B, for «

To complete the description, we obsecve that Gbr(w) is even in w
because gb(t) is real. A program for Gbr(w) follows, where we

have made the following identifications: W = w, A = o, B = 8,

U = yu.

10 DEF FNGbr(w,A,B,U) 100 1IF wWa<A THEN 150

20 Wa=ABS(W) 110 Ra=l./Ea

30 F=PI/(A*B*(B*B+U*U)) 120 T=(Ra-Ea)*Ca*(B*Cw-U*Sw)

40 Ea=EXP(~B*A) 130 B2=.5*(T+(Ra+Ea)*Sa*{U*Cw+B*Sw))
50 Ew=EXP(-B*Wa) 140 RETURN F*Ew*B2

60 Ca=COS(U*A) 150 Rw=l./Ew

70 Cw=COS(U*Wa) 160 T=(Rw+Ew)*Cwx{B*Ca-U*Sa)

80 Sa=SIN(U*A) 170 Bl=,5*(T+(Rw-Ew)*Sw*(U*Ca+B*Sa))
90 Sw=SIN(U*Wa) 180 RETURN F*(B-Ea*Bl)

190 FNEND

12
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1f we now employ (23) in (5), we obtain
M-1

- Gbr(Ym) ' (27)
m=1-M

v - J dt sin{at) s@n(Myt)
1b (t_”)z + 62 at sin(yt)

where Gbr(m) is given by (25), (26), and its even property.

Since there is a break in the analytic form for th(w) at w = +o,
it is not reasonable to perform the summation in (27) in closed
form; those terms in (27) for y|m| < « utilize the upper line of
(26), while those for y|m| > a« utilize the lower line of (26).
However, since Gb[(m) is even in w, the simplification in (6) is
applicable.

Instead, when (23) is substituted in (9), there follows

M-1

. 2

dt sin{at) [sin(Myt) Z

V,, = : - (M - |m|) G, _(2ym),
2b J (t_”)z + s2 at [51n(yt) ] Ly br

(28)

where Gbr(w) is given by (25) and (26). Again, the break in form
of Gbr(w) at w = +a precludes a closed form result for the
summation in (28); also, the simplification in (10) is

immediately applicable to (28).

13
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EXAMPLE C

The final example is

. 2

1 sin{at)

g (t) = , g8 >0, a>0. (29)
c (t_”)z + sZ [ at ]

The Fourier transform of the second term in (29) is a triangle

located on interval (-2«a, 2a) in w. Therefore, Gc(m) is given by

convolution
Ww+2a
- N i gu— _ Jw-ujf
Golw) = 5z I du exp(-iumu-8lu]) (1 -y ] : (30)
-2

Because gc(t) is real, only the real part of (30) is needed.
This tedious calculation has been carried through, with the

following result; define auxiliary variables

R = B2-4%, 1 = 284, D = g2+42, E, = exp(-Bw), E_ = exp(-2Bal,
€, = cosh(2Ba), S = sinh(2Ba), C_ = cos(2px), S_ = sin(2pa) ,
Co = cosh(Bw) , S, = sinh(Bw) , C, = cos(pw) , 8 = sin(pw) ,
c; =¢C,C,(RC_-1IS)+58 S (RS +1IC),
C, =C,C ,(RC ~-I8)+S8 S (RS +1IC),
C=RC -18_ . (31)

w w

Then we find that real part

1 for 0 < w € 2«

= —
Gcr(w) = ZaZSDZ .{32)
- Ew C + Ew C2 for 20 < W

DB (20 - w) - Ew C + Ea C

14
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Also, Gcr(w) is even in w. A program for Gcr(w) is listed below,

where W= w, A # «, B u B, Umnm pg.

10 DEF FNGcr(wW,A,B,U) t{ A>0, B>O
20 Wa=ABS(W)

30 Tb=2.*A*B

40 Tu=2,*A*U

50 Bw=B*Wa

60 Uw=U*Wa

70 B2=B*B
80 U2=U*U
90 R=B2-U2

100 I=2.%B*U

110 D=B2+U2

120 Ew=EXP{-Bw)

130 Ea=EXP(-Tb)

140 Ca=COS(Tu)

150 Sa=3IN{Tu)

160 Cw=COS(UW)

170 Sw=SIN(Uw)

180 C=R*Cw-1*Sw

190 1IF Wa<2.*A THEN 250

200 Ra=l./Ea

210 C2=.5*(Ra+Ea)*Ca*C

220 C2=.,5*(Ra-Ea)*Sa*(R*Sw+I*Cw)+C2
230 T=Ew*(C2-C)

240 GOTO 2S¢

250 Rw=l.,/Ew

260 Cl=_,5*(Rw+Ew)*Cw*(R*Ca-I*Sa)
270 Cl=.5*%(Rw—-EwW)*Sw*{R*Sa+I*Ca)+Cl
280 T=D*(Tbh-Bw)-Ew*C+Ea*Cl

290 RETURN PI*T/(Tb*A*D*D)

300 FNEND

We now substitute (29) into (5) and get

P

M-

. 2 -1
dt sin(at)]® sin(Myt) _ '
Ve T J : 2 [ at ] sin{yt) é G lym) , (33)
(t—”) - 8 m=1-M

where Gcr(w) is given by (31), (32), and its even character. The
break in form in (32) at w = +2a precludes a closed form for the

sum in (33). liowever, (6) is still applicable.

185
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When (29) is utilized in (9), there follows

v . J dt [sin(at)]z [s;mmc)]z }
2¢ tom? . a2 ot sin(vt)
-1
~ Z (M - |m]) G  (2vym) . (34)
m=1-M

Equation (10) may also be employed here.

SPECIAL CASES

If we set M = 1 in (17), there follows

™=

dt
-G (0) =1, (35)
J (t-u)% + g2 arf

where we used (16). The same case in (27) yields

dt sin{at)
=G, (0) =
J (t—u)2 + 62 at br

= —D1 (B - exp(~-Ba) [B cos(ua) - u sin(wa)]} , (36)

a8(82+u2)

upon use of (26) and (25). Finally, from (33),

16
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r

. 2
dat sin(at) -G (0) =
j (t_u)z + 52 { at ] cr
- "2 22(20:3(824-112)-R+Ec(RCa-—ISu)),
228 (8%44%)

using (32) and (31).

17,18
Reverse Blank

(37)
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APPLICATION TO SUMS

In this section, it is more convenient to use Parseval’'s

theorem (2) in the form
w* *
V - I dt g(t) h*(t) = I df G(£) H (£) .,
where Fourier transform

G(f) = j dt exp(-i2nft) g(t)

Now, we take as our candidate h(t) function,
h(t) = p(t) 88,(t) ,

where §,(t) is the infinite impulse train

SA(t) = EZ: §(t - ka)

k

The Fourier transform of h{t) is then

k
H(f) = B(f) @ &, ,(f) = EZ: p(e - §) .
K

where P(f) is the Fourier transform of p(t), ® denotes
convolution, and we have utilized the fact that the Fourier
transform of impulse train A&A(t) is another impulse train,

81/A(f).
Substitution of (40) and (42) in (38) yields

19

(38)

(39)

(40)

(41)

(42)
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Vo= A Z g(kd) p (kd) = Z J-df G(f) P*(f - %] . (43)
K k

For general p(t) and P(f), this will not be a useful relation,
since the right-hand side of (43) is an infinite sum of
integrals. However, we will be interested here only in the

special cases of

. n
p(t) = [§i§i§1£l] ' n integer . (44)

sin(vt)

CASE n = 0
For n = 0, the above relations specialize to

p(t) = 1 ’ P(f) = 6(f) ’

v, =8 Z g(ka) = Z G[%) . (45)
k

This is a discrete version of Parseval’s theorem. Although one
infinite sum has been traded for another, we can now choose that
alternative that has the most rapidly decaying (and/or easily

computed) summand for numerical evaluation.

20
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CASE n = 1

Now we have, via (3),

M- 1
sin(Myt) .
51n(yt) exp(1ytm) . (46)

m=1-M

p(t) =

There follows

M-1
P(f) = Ta(e - 1Y,
m=1-M

e 4

-1

H(f)=Z Z s[t-%—lﬁ],

k mel-M

- sin{Mybk) -
vy = 8 Z 9(k8) SIn(vaK) (47)
K

M-1

-Z Z'G(%+:2(%) : (48)
k m=l-M
Again, we have an alternative infinite sum (48) that
hopefully decays faster than the original sum (47). The
sin(Mx)/sin(x) term does not help convergence in (47) because
this term rever decays for large x. Although (48) is a double
sum, the summation on m only contains M terms; the utility of

(48) depends heavily on the asymptotic decay of G(f) for large f.

21
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CASE n = 2

With the aid of (7), we now find

M-1
p(t) = [:iﬁ(?tg) - |m]) exp(i2vytm) ,
m=1-M
M-1
P(£) = - |m]) 8(f - 1) ,
mel-M
M-1
H(f)-z (M—lml)s(f-%—l—:%],
k m=l-M
- sin(Mydk) -
v, = 8 Z g(ka) [sm(wk) ] (49)
K
M-1
-Z Z (M - lml)G(%+1%) : (50)
k m=1-M
EXAMPLE
Consider, as in (14) and (16),
1
g (t) - ?
2 (t-u)? + g
Gy () = % cos(2nuf) exp(-2nB|f]) . (51)

The summations in (47) and (49) are very slowly decaying, leading

to difficulty in attaining accurate results., The alternatives in

22
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(48) and (50), on the other hand, have exponential decay and can
be evaluated quite accurately. The additional examples given
earlier in (23) - (26) and in (29) - (32), along with the
corresponding programs, lend reasonable alternatives to some

otherwise lengthy numerical calculations.

SOME RELATED SUMS

Here, we collect a few closed form results for sums involving

the sin(Mx)/sin(x) kernel. For ease of notation, define

- sin{Mkn/N)
SyiM k) = CTntkn/N) (52)
Observe that
M for k = 0, +2N, +4N,...
SN(M.k) = . (53)

M(-l)M"1 for k = +N, +3N,...

Then, we find the sum over one interval to be

N-1 M for M even
}E: SN(M,k) - ' (54)
k=0 N(1l + 2J) for M odd
where
J = xuw[ﬂgﬁ] i (55)

23
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The sum over a double interval is

2N-1 0 for M = 0,2,4,......
zz: SN(M,k) = . (56)
k=0 2N for M =1,3,...,2N-1

The correlation on the second variable of SN is
N-1

Sy(M k) S (M, k+j) = N S (M,j) for 0 < M < N and all j. (57)
k=0

Finally, the correlation on the first variable is

N-1
zz: Sn(M/k) S (M+2L,k) = M(M + 2L) +
k=0
M(N - M - 2L) for 0 <M+ L <N
+ . (58)
N(3M + 2L -2N) - M(M + 2L) for N < M+ L

for all M, L, N, wherge

M =MMOD N , L =1L MODN . (59)

24
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SUMMARY

Extensions to integrals involving [sin(nx)/sin(x)]n for n > 2
are possible, based upon the results presented here. For

example, starting from (12A) for arbitrary weights, we could

consider
hs(t) = hi(t) - Z v(p) exp(~-i2ytp) , (60)
P
where
vi(p) = Z ¢(m) ¢*(m-p) (61)
m

is the autocorrelation of sequence {¢(m)} defined in (12B).

Therefore, Fourier transform

Hs(w) = 27 Z vip) &(w + 2vyp) , (62)
p
giving rise to
Ve = I dt g(t) hs(t) = }[: vip) G(2vp) . (63)
p

The case of equal weights {wk} in (12A) now corresponds to n = ¢
in the sine function ratio above, and vy(p) is the autocorrelation

of a triangular seguence.

25
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The evaluation of integrals and sums involving the term
[sin(Mx)/sin(x)]™ can often be simplified by the use of
Parseval’s theorem because thies term has a Fourier transform
which is a finite sum of delta functions., Major effort can then
be concentrated on getting the Fourier transform of the
complementary part of the integrand. This procedure has been
applied here to several examples which arise in evaluation of the
response of equispaced arrays to distributed spatial fields. For
more complicated fields, a fast Fourier transform procedure
combined with the above result leads to a very efficient method
of integral evaluations; see appendix A. Applications of this

procedure have been made in [5].

26
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APPENDIX A - USE OF FAST FOURIER TRANSFORM

The summations for V1 and V2 in (5) and (9), respectively,
require the evaluation of the Fourier transform of g(t), namely
G(w), at equispaced increment 2y. But this latter function can

be approximated by means of the trapezoidal rule according to

Glw) = Idt exp(-iwt) g(t) =

= A }E: exp(-iwdn) g(nd) = G(w) = Ez: G(w - ng%) ’ (A-1)

n n

where A is the sampling increment in t. The latter summation in
(A-1) indicates aliasing lobes separated by 2n/A on the w axis.
In order to control the aliasing in (A-1), we must choose 4 small

enough, say 4 < 8- Then samples of aliased approximation G(w)

in (A-1) at multiples of 2y are given by

G(2ym) = & j{: exp(~i2yAmn) g(na) . (A-2)
n

Now since A is arbitrary, except for upper limit Ao’ choose

(A-3)

Zla

where N is an integer and 2y is the prescribed increment in w.

In order that A be less than Ao' we must take integer
N);—E-'. {A-4)

Use of (A-3) in (A-2) gives the approximation samples

27
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G(2ym) = & }Z: exp(-i2nmn/N) g(nd) = (A-5)
n
N-1
= 4 E:: exp(-i2nmn/N) gc(nb) ' (A-6)
n=0

where "collapsed" sequence [4; pages 4 - 5]

gc(nb) = }E: g(na + kNa) for 0 < n <N -1, (A-7)
k

The manipulation from (A-5) to (A-6) is exact; it avoids
truncation error normally associated with functions g(t) which
decay slowly with t. The sum on k in (A-7) must be carried out
(for each n) until negligible values for g are encountered for
both positive as well as negative values of k. !

Equation (A-6) indicates that values of G(2ym) for m = 0 to
N - 1 are available by an N-point fast Fourier transform when N
is a power of 2. These are exactly the values of G(w) needed for
the sum in (5B) for M odd, as well as for the sum in (9) for all

M. The values for negative m required in (5) and (9) are

available in locations m mod N. A program for these cases is
attached at the end of this appendix.

In order to get all the desired values of G(2ym) required for
(9), without aliasing, we also require that N/2 > M. (On the
other hand, the requirement for (5), with M odd, is slackened to

N > M.) Thus, the final condition on integer N is

n
N > max(YAo, ZH) for (9) . {A-B)

28
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For the case of (5) with M even, where the increment on w is

2y, but starting at w = y, we return to (A-1) to find that

G(y + 2ym) = & }E: exp(-iyAn - i2yAmn) g(na) . (A-9)
n
The same choice of 8 in (A-3) now yields
G{y + 2ym) = & }E: exp(-i2nmn/N) exp(-inn/N) g(na) . (A-10)
n
This result is identical to (A-5) except that g(na) must be
replaced by

exp(-inn/N) g(na) = §(na) . (A-11)

-~

Calculation of the collapsed version of § is eased by the

observation that

§c(n6) = E:: §(nd + kN3) =
k

- }Z: exp{-in(n + kN)/N) g(nd + kN4, =
k

= exp(-inn/N) EZ: (-1)k g(na + kNA) for 0 < n <N -1, (A-12)
k

thereby leading exactly to

N-1
G(y + 2ym) = & }Z: exp{~i2nmn/N) §C(nA) . (A-13)
n=0




The leading phase factor in (A-12) only needs to be evaluated at

N different values (perhaps by recurrence), and the sum in (A-12)
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requires differencing of "adjacent” samples of g spaced by Na,

rather than the straight summation previously adequate for (A-6)

and (A-7). Condition (A-8) applies here as well.

PROGRAM FOR (5B) WITH M ODD, AND FOR (9)

L g Pl o G50 0 N L L Py e
DA D DO R0 D0 D D DD

[ A e et

160

TR Q682, FFT EVALUATION OF <(9> FOR ALL M, AKRD <S> FOR M QDD

Ti=-3000 ! LEFT EHD ARRGUMEHNT FOR g4 t>
RIGHT EHD RRGUMEHNT FOR g(t>

2=3000 {
Delrtao=,B8%5 ! STARTIHNG Deilta, (A-4)
=7 ! IHTEGER Il (9> AHD (5)
Gamma=, 785 t  CONSTRHT IH (3> ARHD (3
T=P[-{Gamma*Deltao)
ti=1

IF HO>MAXC(T,2¥M) THEH 120 t (A-8D

H=H%2 i H = SIZE OF FFT

GNTO 90

Ilelta=Pl/(H*¥Gammna) 1 (A=-3), IHCREMEHT IH 1
DOURLE M,H Hs ,H1,H2,Hn ! THTEGERS

FEDIM Cos(H/4) ,X(A3H-1>,Y(B:1H~-1)

DIM Cose(10824),X(40%963,Y(4096>

T=2.%P1/H

FOR He=0 TO H-/4

Cos(Hg)=COS(T*Hs? | QURRTER-COSIHE TAELE
HEXT Hs

MAT X=(0.>

MAT ¥Y=(@.)

H1=THTC(T1-Delt ad

H2=1HT(T2/Deltad+l

FOR Hs=H1 T0O H2

T=Delta*hs 1 ARGUMEHT OF IHTEGRAND
G=FUL(T) | INTEGREAND q<t>, REAL HERE
IF HMe=H1 THEH FPRINT "IHTEGRAUD AT LEFT END ="31G

IF Hz=H2 THEW PRINT "IHNTEGRAHD AT RIGHT END =3

Hn=Hs MODULC H

HOHNY=XHR) +G t COLLAPSING

HEXT Hs

MAT H=¥*¥(Delta)

CALL FFt14(H,Cos(#),X(#),Y (%)) { @ SUBSCRIPT FFT
GINIT

FLOTTER IS "GRAPHICS"

GRAPHICS OH
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378
3g8e
390
4009
410
420
438
449
458
460
470
480
490
508
S1e@
520
538
548
550
560
570
580
590
£89
€10
620
€30
649
€50
660
678
£80
690
700
710
720
738
749
750
760
770
788
798
809
g19
8206
8386
840
85a
860
87@e
230
894
1:1%)
910
320
330
240
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N2=N-2

WINDOW -H2,N2,-16,2

L INE TYPE 3

GRID M-8,2

LINE TYPE 1

FOR Ns=-H2 TO0 N2

Mnh=He MODULO N

¥n=X(Hn)

¥Yn=Y{(Hn)>

T=Xn*¥n+tYn*¥n

IF T>0. THEH 590

PEHUP

GOTO S18

PLOT Ns,.S*LGTC(T) !
NEXT Ns

PEHUP

FRUSE

VZr=V2i=0. !
FOR Ns=t~M TO M-I

T=M-ABS(Ns>

Nn=Ns MODULO N

V2r=¥2r+T#X(Nn) |
V2i=V2i+T#Y(Nn> |
NHEXT HNs

PRINT

MAGHITUDE OF TRANSFORM

(9>

¢9>, REAL PART
<9), IMAG PART

PRIHT "EDGE VYRLUES USED IHN SUM: "sNn3X{(Hn);Y(Hn)

PRINT "Y2r = ";¥2r,"V2r/M 2 = ";V2r/Ms2
PRINT "V2i = "jV2i,"V2i/M~2 = “3V2i/M~2
PAUSE

Vir=y1i=0, I (S

IF (M MODULO 2)>=1 THEN 700

PRIHT “NHO GOOD FOR <¢(S5> WHEN M IS EVEN"

PAUSE

Mi=(M-1)r2

FOR Hs=-M!l TO M1

Hn=Ns MODULO N

Vir=¥Yir+X<«(Nn) !
Vii=vV1i+¥Y(Nn {
MEXT Ns

PRINT

(5>, REAL PART
¢5>, IMAG PART

PRINT "EDGE YRLUES USED IN SUMt "jNnjX<Nn)jYC(Nn>

PRIMT "Vir = "j¥1lr,"Vir/M = “jVir/M
PRINT "vii = "j3¥ii,"vii/M = "3V1isn

PRINT

PRUSE

END

!

DEF FHGC(T) 1
Mu=,71

Beta=,49061

Alpha=,565

(29) EXAMPLE

IF T=8., THEN RETURN {./(MusMu+BetazBeta)

A=AlphasT

S=SIMC(AY /A

A=T-Mu

RETURN S*#S-(AsA+Beta*Beta)

FHEND
!
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117e
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1209
1210
1228
1230
1240
1258
1268
t2ve
12880
1290
1200
131@
1320
1338
13240
1338
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SUR Fft14C(INUBLE H,REAL Cos(*),X(#>,Y(%>) | Ni=2~14=16284; @ SUBS
DOUELE Log2n,N1,H2,H2,N4,J,K ¢ IHTEGEPS < 2+31 = 2,147,483,648
DOUBLE 11,12,13,14,15,16,17,18,19,110,111,112,11%,114,L8:1%>

IF H=1 THEH SUBEXIT
IF H>2 THEH 1e7e
A=X(B8Y+X (1)
XC1)=RC@I» =X
X(@>=R/

RA=YL@X+Y (1)
YC1I=Y(@r-v(t)
Y<(@>=8

SUBEXIT
A=LOG (Y ~LOGC2,)
Lag2n=f

IF ABS(A-Log2n><1.E-8 THEH 1120
FRINT "H ="3;H;"1S HOT A POMER OF 2; DISALLOWED."
PRUSE

Ni=H-4

H2=H1+1

N3=H2+1

He=-i{3+H1

FOR 11=1 T0O Logen
I2=2~(Log2n-11)>
13=2+12

14=H/13

FOR IS5=1 TO 12
I6=CI5~1)%14+1

IF 16<{=N2 THEN 1268
Al=-Cos(N4-16-1>
A2=-Cos(l6-N1=-1)
GOTO 1288
Rl=Cos(l6-1>
A2=-Cos(H3-16-1)
FOR IV=B TO N~-I3 STEP 13
[8=17+15-1

19=18+12

T1=X(18>

T2=X(19)

T3=Y(18>

T4=Y (19

A3=T1~-T2

A4=T3-T4
KCIgr»=T1+472
YCIBI=T3+T4
HCI9Y=A1*A3-A2+%A4
Y(I19>=A1*¥A4+A2%A3
HEXT 17

HEAXT IS

HEXT It
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1440
1450
1460
1470
1480
1490
15680
1510
1529
1538
1549
1550
15¢€0
1570
1580
1590
1608
1610
1620
1630
1640
1€5a
1669
1670
1686
1690
1voe
1718
1720
1739
1740
1v5e
1760
1778
=1
t7%e
1860
1810
1820
1830
1840
1850
18690
1870
18388

Ii=Log2n+i

FOR I2=1 TO 14

L¢I2

~1>=1

IF 12>Logen THEHN
LCI2-10=2~C11~-12)

MHEXT
K=0
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

12

It=1 T0 LC1I3)
LCEI2) STEP LC13D
LCi1) STEP L(12)
L(1@> STEP LC(11)

I2=11
I3=12
14=13
15=14
1e=15
i?=16
18=17
19=18

10
T0
T0
TO
TO
T0
T0
10

L(9)
L¢B>
L(?
L(6>
L{SO

1490

STEP
STEP
STEP
STEP
STEP

TR 8689

Lci1@d
LC
L(8>
LC(?>
L)

118=1I9 TO L(4)> STEP L(5)

I11=110 TO L(3
112=I11 70 L(2)
113=112 70 L<C1D
114=113 TO L(@)

J=114-1
[F K>J THEM 1730
A=X(K)

RCKD
KD

=¥
=R

A=Y (K>

YK
Yl
K=K+
NEXT
MEXT
HEXT
HEXT
HEXT
HEXT
NEXT
HEXT
HEXT
HEXT
HEXT
HEXT
HEXT
HEXT

=Y
=R

1
114
113
112
111
110
19
18
17
16
I3
14
13
12
11

SUBEND

STEP L<4)
STEP L(3)
STEP L(2)
STEP L(1>
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APPENDIX B — PROGRAMS FOR (6), (10), AND (13B)

Table B-1. Program for (6)

10 M=7 ! > 0

20 Gamma=1.31 i1 >0

30 DOUBLE M,Ms ! INTEGERS
40 S=0,

50 IF (M MODULO 2)=1 THEN 110
60 FOR Ms=1 TO M-1 STEP 2
70 S=S+FNG(Gamma*Ms)

B0 NEXT Ms

90 V1=2,*§

100 GOTO 150

110 FOR Ms=2 TO M-1 STEP 2
120 S=S+FNG(Gamma*Ms)

130 NEXT Ms
140 V1=FNG(0.)+2.*S

150 PRINT M,Gamma,Vl

160 END

170 1
180 DEF FNG(W)

Table B-2. Program for (10)

10 M=6 t >0

20 Gamma=.71 ! >0

30 DOUBLE M,Ms ! INTEGERS
40 G2=2.*Gamma

50 S=0.

60 FOR Ms=1 TO M-1

70 S=S+(M-Ms)*FNG(G2*Ms)
80 NEXT Ms

90 V2=M*FNG(0.)+2.*S
100 PRINT M,Gamma,V2

110 END

120 ¢

130 DEF FNG(W)
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> 0
> 0
INTEGERS

REAL WEIGHTS

CORRELATION OF WEIGHTS

INTEGER

FLAT WEIGHTS
HANN WEIGHTS
HAMMING WEIGHTS

NORMALIZATION

Table B-3. Program for (13B)
10 M=9 ]
20 Gamma=.79 {
30 DOUBLE M,Ms,Ks !
40 DIM W(100)

50 REDIM W(1l:M)

60 CALL Weights(M,W(*)) !
70 G2=2.*Gamma

80 S=0.

90 FOR Ms=1 TO M-1
100 Phi=0.
110 FOR Ks=Ms+l1 TO M
120 Phi=Phi+W(Ks)*W(Ks-Ms) !
130 NEXT Ks
140 S=S+Phi*FNGr(G2+*Ms)
150 NEXT Ms
160 pPhi=(,
170 FOR Ks=1 TO M
180 Phi=Phi+W(Ks)*W(Ks)
190 NEXT Ks
200 V4=Phi*FNGr(0.)+2.*S
210 PRINT M,Gamma,V4
220 END

230 1

240 SuUB Weights(DOUBLE M,REAL Wwi*))
250 DOUBLE Ks !
260 T=2.*PI/M

270 FOR Ks=1 TO M
280 D=Ks-.5
290 W(Ks)=1. !
300 W(Ks)=.5-.5*COS(T*D) !
310 W(Ks)=.54-.46*COS(T*D) !
320 NEXT Ks

330 MAT W=W/SUM(W) ]
340 SUBEND

350 1@

360 DEF FNGr(w)
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Operating Characteristics for Weighted
Energy Detector with Gaussian Signals

Albert H. Nuttall

ABSTRACT

The performance of several weighted energy detectors of
Gaussian signals in noise are investigated, both by exact
procedures and by five different approximation procedures. 1In
particular, receiver operating characteristics, for false alarm
probabilities ranging from 1E-10 to .1 and detection
probabilities ranging from .01 to .999, are guantitatively
compared. The standard Gaussian approximation is found to be
severely deficient and generally optimistic for small false alarm
probabilities, while two different fourth-order approximations
have excellent capability over the entire range of probabilities
considered.

A method of avoiding the calculation of the eigenvalues of a
covariance matrix, and yet accurately predicting performance of a
fading medium, is presented. It requires only sums of products
of the covariance elements directly, the precise number depending
on the order of the approximation.

Approved for public release; distribution is unlimited.
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OPERATING CHARACTERISTICS FOR WEIGHTED

ENERGY DETECTOR WITH GAUSSIAN SIGNALS

INTRODUCTION

The operating characteristics of an equi-weighted energy
detector for Gaussian signals in noise, in terms of false alarm
and detection probabilities, can be characterized mathematically
by a partial exponential expansion, and have previously been
numerically evaluated for arbitrary numbers of samples and
signal-to-noise ratios [1; (7) - (8) and figures 2 - 6].
However, when the weights employed in the energy detector are
unequal, or if the signal and noise powers on each sample are
unequal, these results do not apply and can be misleading,
especially when the number of samples summed is not large. What
is needed, in this case of arbitrary numbers of samples and
unequal weights or powers, is an exact approach in terms of the
characteristic function of the decision variable; this latter
function is frequently available in closed form and can be
employed in the fast efficient procedure presented in [2] and
utilized in [3,4,5] for direct accurate evaluation of the
exceedance distribution function.

At the same time, it would be very useful to have accurate
approximations for the receiver operating characteristics, which
apply over the full range of applicable false alarm and detection
probabilities, yet are easily computed in terms of readily

available functions, or circumvent some of the more difficult
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numerical procedures required in the exact approach. Here, we
will consider four such approximations, namely Gaussian, chi-
square, constant plus chi-square, and generalized noncentral
chi-square, and demonstrate the range of applicability of each.

Thus, our goals here are two-fold

(1) determination of exact operating characteristics of
arbitrary weighted energy detectors along with working programs,
thereby allowing for investigation of other similar cases of
interest to the user; and

(2) construction of accurate simple approximations to the
operating characteristics, which can be extended to related
difficult problems and/or circumvent complicated numerical
procedures.

As a by-product, the inadequacy of some extant approximations
will be delineated quantitatively; in particular, the generally
optimistic results predicted by the Gaussian approximation will
be shown to prevail even when the number of independent samples

involved in the energy detector is very large.
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CHARACTERISTIC FUNCTION

We presume that we have M channels (or samples) containing
either noise-alone or signal-plus-noise, and that the random
variables in each channel are statistically independent of each
other. Specifically, for our interest, the output envelopes,
{em} for 1 < m < M, of M disjoint narrowband filters are
subjected to weighted square-law summation for purposes of
threshold comparison and a statement about signal presence or
absence on that particular obszrvation of M outputs. The

decision variable in this case is

M M
2
X = E woe = E LN S (1)
m=1 m=1

where weights {wm} are all positive but otherwise arbitrary, and
the M squared-envelope outputs {zm} are statistically independent

and identically distributed. An example is afforded by a finite-

time exponential summer where W = A rm"l , T €1, 1 < m < M.

Without loss of generality, the sum of the weights is set
equal to unity,
M

Vo = 1 ; that is, A =

1-r
1—rM

me=]1

Then, the mean of random variable x in (1) is equal to the mean
of each random variable Z because all the {zm} are identically
distributed. (If there are scaling differences in the variables

{z_}, these factors can be absorbed in modified scalings (wm},

m
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without loss of generality.) Under these assumptions, it should
be observed that the performance of the weighted energy detector
in (1) is independent of the ordering of the weights; thus, the
weights can be arranged in any order without affecting the
detection capability. Also, the absolute level of the {wm}

cannot affect the operating characteristics of detector (1).

STATISTICS OF Zm

For Gaussian signals and noises present at the inputs to the
M narrowband filters in (1), the probability density function of

each filter output envelope-squared random variable 2 is

pz(u) = % exp[zg) for u » 0 , {3)
where parameter
1 for noise-alone
a = (4)
1 + R for signal-plus-noise

Here, we have normalized according to the noise power; that is,
the mean of random variable Zn is set equal to 1 for noise-alone.
This presumption is equivalent to having knowledge of the average
noise level in the absence of signal and can be accomplished in
practice by monitoring the filter outputs over a sufficiently
long past interval of time. Also, R is the signal-to-noise power
ratio per sample at the output of each filter.

The characteristic function of each random variable Zn in (1)

is given by expectation (ensemble average)
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£,(8) = E{exp(ifz)} = [ du exp(ifu) p,(v) = ;=15 (s)
2 Xpii1egz u expliidu pzu l—iEa'
where we used (3). The cumulants {xz(k)} of z, are immediately
available from (5) as
1 k
('S Xz(k) = a for k > 1 . (6)

Actually, these are scaled cumulants, by the factor 1/(k-1)!;

they are more convenient and will be employed henceforth.

CHARACTERISTIC FUNCTION OF OUTPUT x
The characteristic function of summation random variable x in

(1) is given by expectation

M -1

M
£ (&) = E{exp(i&x}] = TﬁT £ (w &) =

(1 - iawma} , (7)
m=] m=1

where we used the independence of the {zm} and relation (5). The

(scaled) cumulants of x are available from (7) according to
TI:%TT Xx(k) = ak }E:w: = ak Wy for k > 1 . (8)

In particular, the mean and variance of x are, upon use of (2),

2

2
My = xx(l) -aW =a, L xx(2) = a“ W (9)

2

The desired closed form for the characteristic function of x is
given by (7), where the signal-to-noise ratio parameter a is
given by (4). Result (7) applies for arbitrary M, weights {wm},

and per-sample signal-to-noise ratio R.
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SOME RELATED RESULTS

Characteristic functions of the form of (7) occur in numerous
problems., For example, the stability of a spectral estimation
technique employing overlapped FFT processing of windowed data
encountered this form [6; (35) and (15)}, where weights {wm} were
proportional to the eigenvalues {Am} of a normalized covariance
function. Another example is furnished by diversity combination
in a channel subject to partially-correlated signal fading; see
[7; (D-14)]), [8; (24)]), and [9]. In particular, the exact

characteristic function in [7) and [8] took the form

M -D

U{l - igfo? zxm]} , (10)

m=]

where [Xm} are the eigenvalues of a covariance matrix. Parameter

D was the order of diversity in (7], but was equal to 1 in (8].

GAUSSIAN APPROXIMATION TO EXCEEDANCE DISTRIBUTION

For the general characteristic function given by (7) and (4),
a Gaussian approximation to the probability density and
exceedance distribution functions is given in appendix A. It is
derived for arbitrary M, weights {wm}, and signal-to-noise ratio
R. However, its applicability to numerical evaluation of
receiver operating characteristics, in the form of detection
versus false alarm probabilities, will be shown to be rather

limited in the next section.
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EXCEEDANCE DISTRIBUTION FOR ALL WEIGHTS EQUAL
In this section, the weights {wm} in (1) and (2) are equal:

LA for 1 {m {(< M. {11)

The characteristic function in (7) then becomes

£,08) = (1 - ika/m)™" . (12)

This corresponds to a multiple of a chi-squared random variate
with 2M degrees of freedom. The corresponding probability

density function is

uh-1 exp(-uM/a)

(M-1)1 (a/m)™

px(u) = for u > 0 , (13)

while the exceedance distribution function is, for u > 0,

Qx(u) = J dt px(t) = exp{-uM/a) eM_l(uM/a) ] En_l(uM/a) . (14)
u

Here, en(x) is the partial exponential function [10; (6.5.11)},
n xk
e (x) = Z—,— ' (15)
k=0

and we have defined auxiliary function
En(x) = exp(-x) en(x) for x 2 0 . {16)

1f threshold value T is used for comparison with output x of

the energy detector (1), then the false alarm probability P is
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Pp = Q (T; a=1) = E, ,(TM) . (17)

Similarly, the detection probability PD is, from (14) and (4),

Py = Q,(T; a=1+R) = g"_l[ TM)

T+R {18)

When T is eliminated between (17) and (18), the operating
characteristics (PD versus PF) can be plotted, with signal-to-
noise ratio R as a parameter. Separate plots are required for

different values of M, the number of envelope-squared samples.

GRAPHICAL RESULTS
The receiver operating characteristics (ROC) for
Mm=1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 (19)

are plotted in figures 1 through 1, on normal probability paper,
for false alarm probabilities ranging from 1E-10 to .1 and for
detection probabilities ranging from .01 to .999. Signal-to-
noise ratios (in decibels) have been chosen, typically, to cover

Pp/Pp possibilities from low-quality pair .01,.5 to high-quality

F’
pairs in the neighborhood of 1E-10,.99.

Superposed in figure 3 (in dashed lines) is the Gaussian
approximation, for M = 4, to the exact exceedance distribution
function Q, in (14); see appendix A. Three selected values of
signal-to-noise ratio R are indicated, namely R = 4, 8, and 12

dB. They are identified by a black dot where they cross the

exact operating characteristic for the same signal-to-noise
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ratio. It is seen that the Gaussian approximation is virtually
useless at this low value of M, the number of samples.

This superposition, of three representative curves afforded
by the Gaussian approximation, is continued up through M = 1024
in figure 11. Again, agreement with the exact results is
generally quite poor. Even at M = 1024, the required signal-to-

noise ratio from the Gaussian approximation for P, = 1E-10,

F
P. = .3, for example, is in error by .3 dB.

D

Furthermore, it should be observed that the Gaussian
approximation is always optimistic in the useful range of the
operating characteristics; this bias is misleading in
quantitative performance predictions applied to practical
detection systems. Additionally, the case in this section,
namely equal weights, is the most favorable situation for the
Gaussian approximation to apply in; any other distribution of
weight values makes the effective number of weights (Me in (A-6)
and sequel) less than M, thereby deviating even further from an
accurate application of the central limit theorem. The message
to be conveyed here is that the performance capability of energy

detectors for Gaussian signals and noises should be based on

something other than the Gaussian approximation.
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EXCEEDANCE DISTRIBUTION FOR ALL WEIGHTS DIFFERENT

In this section, we confine attention to the case where all

the weights {wm} are different from each other; that is,

Then, we expand the characteristic function of x in (7} in a

partial fraction expansion according to

1

M - M
I l . Bm

fx(E) = (l - 1£wma) = Ez: I—:—TE;;E ' {21)
m=1 m=]

where coefficients
M-1
Y
B, = for 1 < m < M, (22)

i l(wm = Y)
k=1
k#m

depend only on weights {wm} and not on signal-to-noise ratio R.
The probability density function of x is then immediately

available from (21) as

M

px(u) = ;Z:Am B, exp(»Amu) for u > 0 , (23)
m=]1

where A= 1/(wma). The corresponding exceedance distribution is

® M
Qx(u) - J dt px(t) = Ez:Bm exp(-Amu) for u > 0 ., (24)
u m=1

21
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If threshold T is used as the basis of comparison for output
x of the weighted energy detector in (1), the false alarm and

detection probabilities follow from (24), respectively, as
Pp = Q(T; a=1), Py=0Q/(T; a=14+R). (25)

As an example, if M = 1, then wy o= 1, A, = l/a, B, = 1, and

(24) yields Qx(u) = exp(-u/a) for u > 0. Then, (25) gives

1
T 1+R
P, = exp(-T) , PD - exp(«;a] = PF = exp[ (26)

1+R

In PF
F 1

For this special case of M = 1, threshold T can be eliminated and
Py expressed explicitly in terms of P and R.

GRAPHICAL RESULTS

The particular case of unequal weights that we shall

concentrate on here is a set of exponential weights

w = a ™1 for 1 <m <M, t

o < (27)

A
[
-

where scale factor A is selected for normalization of the
weights, according to (2). Of course, _he absolute level of the
weights does not affect the operating characteristics.

In fiqure 12, the ROC for M = 4 and r = .99 is plotted, as
determined from (25) and (24). Since r is close to 1 for this
example, the weights (27) are all nearly equal, causing some of
the coefficients {Bm} in (22) to be rather large, in the range of

+.5E6. This leads to round-off error in sum (24) for the

22
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exceedance distribution function and the possibility of useless
numerical results; however, because M = 4 is a small number, the
round-off error does not yet show up in figure 12.

When M is increased to 8 in figure 13 and r is kept at .99,
coefficients {Bm) in (22) reach values in the range of +.7El2,
and round-off error begins to show up as wiggly lines in the
higher detection probability values near .999. We are using a
computer with 64 bits per word, which yields approximately 15
decimals of accuracy for the mantissa. Although coefficients
{Bm} can be calculated very accurately from (22), they alternate
in sign and can be very large. Then Q, in (24) requires
differencing of large numbers, with an attendant possibly
damaging loss of accuracy, especially tor small Pe.

When M is increased by one, to 9 in figure 14, and r is
maintained at .99, round-off error is now significant at the
upper edge of the ROC, although useful characteristics are still
available for lower values of Py- The reason for this problem is

that all the weights are close to each other; in fact, the M-th

weight is -1

= .923 times as large as the first weight. The
largest coefficient values for {Bm} are in the range of +.16E1l4.
When the weights are spread out over a wider range, larger
values of M can be tolerated in sum (24), without encountering
significant round-off error. For example, a set of M = 16
uniformly distributed random weights, over the (0,1) interval,

were utilized in fiqure 15 without any problems. But when M was

increased to 20 in fiqure 16, again for uniformly distributed

23
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weights, the upper edge of the ROC, for Py > .99, was useless.

Nevertheless, a significant portion of the ROC for lower Py
values is still acceptable.

The lesson to be drawn from these results is that the partial
fraction expansion, leading to the exceedance distribution
function in (24), has utility for spread out weights {wm} and
moderately low values of M, the number of envelope-squared
samples. However, it will not be a viable tool for large values
of M, nor for general weight structures which may have some close
or equal values. The more general approach presented in {2], in
terms of an arbitrary characteristic function, has no such

limitations, on the other hand, although the numerical

calculations required are more extensive.
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CHI-SQUARED APPROXIMATION FOR ARBITRARY WEIGHTS

The difficulty of evaluating the ROC from exact character-
istic functions of the form of (7) and (10) has prompted the use
of approximations that attempt to extract an effective number of
independent samples from a general weight structure, and use this
parameter in a simpler chi-squared fit. For example, in
[6; (38) and sequel], such an approximation was fruitfully
employed to study the stability of a spectral analysis technique
employing equi-weighted overlapped segments. Also, in
{9; (A-24) - (A-28)]), a chi-squared approximation was adopted for
the analysis of a diversity combiner in a partially-correlated
fading channel. However, in this latter case, no quantitative

measure of the error in the approximation was given.

PARAMETERS OF APPROXIMATION

Here, we will address the adequacy of the chi-squared
approximation for a general exponential weight structure of the
form of (27). We begin by generalizing the chi-squared
characteristic function in (12) to the candidate form

-M
£,08) = (1 - ikw_a) € (28)

where Vo is an effective weight and M, is an effective number of
envelope-squared samples, which may be noninteger. (The number
of degrees of freedom in (28) is 2Me.) The corresponding

probability density and exceedance distribution functions are
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Me-l -u
u exp[wea]
pe(u) = M for u > 0 ,
e
T(Me) (wea)

u

Qe(u) = I'(Me, ;e—a)/r(me) for u > 0 , (29)
respectively, where I'(:-,+) is the incomplete gamma function
[10; 6.5.3]. These results generalize (13) and (14). The
(scaled) cumulants of this gamma distribution follow from (28) as
1
1

k
OT xe(k) = Me (wea) for k

v
=

(30}

The mean and variance of this approximation are therefore

2 .2 .

M, w, a and M, w, a7, respectively.
When we equate these first two moments of the generalized

chi-squared approximation (28) to the first two moments of

decision variable x in (9) and (8), we find

(31)

For example, if all the weights are equal, then M, = M. On the
other hand, if all the weights are zero except for one, then
Me = 1. Both of these limiting cases obviously agree with
physical intuition. Observe that Ve and M, are independent of
parameter a or R, the signal-to-noise ratio.

For the exponential weight structure in (27), the effective

number of weights and the effective weight are
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1
’ w =‘ﬁ— for Wlﬂ'l . (32)

It should be noted that as M » «», effective number M, saturates
at value (1 + r)/{(1 - r), which is not infinite.

Since the incomplete gamma function in (29) is tedious to
compute for M, noninteger, performance could be bracketed by the
two cases Mi' Mi+1, where Mi is the integer part of Me. Or
interpolation could be used between these two cases. Instead, we
shall choose examples for which M, is an integer; this allows us
to use a form like (14), which is easily computed upon

replacement of M by M-

GRAPHICAL RESULTS

The first example of the use of a chi-squared approximation,
for the exponential weight structure in (27), is furnished by
figure 17 for M = 5, r = .69388907; this particular r value is
chosen to yield M, = 4, as may be verified from (32). The exact
results (solid lines) in this figure were obtained by the method
of the previous section, namely, all weights different. The
three dashed curves are yielded by the chi-squared approximation
of this section, with M, = 4; the latter are seen to be
optimistic by almost 1 dB along the left edge of the figure.

When M is increased to 25 and r decreased to .60000182, again
resulting in Me = ¢4, figure 18 shows that the chi-sguared

approximation is far worse. The reason for this behavior is that
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25 significantly different weights cannot be well represented by
4 equal weights in terms of evaluating the detection capability
of the energy detector (1).

The series of plots in fiqures 19, 20, 21, 22, 23 correspond,
respectively, to Me = 8, 16, 32, 64, 128, for various
combinations of M and r, as indicated on the figures. Again, the
chi-squared approximation is generally optimistic in the useful
range of performance. For M = 64 in figure 20, the discrepancy
is almost 1 dB along the left edge. However, for large M, like
200 in figure 23, the difference is only about .25 dB along the
left edge.

The results in figures 21, 22, 23 for Me = 32, 64, 128,
respectively, were not obtainable from the all-weights-different
method of the previous section, due to excessively large
coefficients {Bm} in (22). Instead, it was necessary to resort
to the numerical integration procedure given in [2]; the values
of increment Ai and length LE appropriate to each case are
indicated on each figure.

A conclusion to be drawn from the results in this section is
that, although the chi-squared approximation is much better than
the Gaussian approximation, it is still not adequate for accurate
performance predictions within a few tenths of a decibel. The
chi-squared approximation is generally unacceptable for small M.
unless r is very close to 1. And for large Mg it is acceptable
in some regions of the ROC, but not in others, especially if the

extreme weight ratio, Ml s very small.
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Figure 23. ROC for M=200, r=.98
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THIRD-ORDER APPROXIMATION FOR ARBITRARY WEIGHTS

When a constant c¢ is added to a random variable, the
characteristic function is modified by multiplication by the
factor exp{icf). Accordingly, a further generalization . the
chi-squared characteristic function in (28) is affurded by

exp(iibca)

fc(E) = " exp(i&bca - M In(l - iEwCa)) . (31
c

(1 - i&w_a)

This form now has three parameters to choose, namely W bc' and
effective number of samples M.. This is in distinction to the
chi-squared approximation (28) and the Gaussian approximation

(A-2), both of which had only two free paramcters to adjust.

Thus, whereas we only matched the first two moments in (30) and
(A-3), respectively, to those of decision variable x, we can now
match the first three moments of x if we use characteristic

! function model (33).

The cumulants of characteristic function (33) are

xc(l) M w_a + bc a ,

C c

TE:%TT X (k) = M_ (w, )k for k » 2 . (34)

When the first three cumulants (or moments) of (34) are equated
with the corresponding quantities of decision variable x, as

given by (8), the unique solutions for the parameters of (33) are

wg W
M ==, w =gz, b_ =W -z, (35)
W
Wiy
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where

M
_ k
Wk = zz:wm . (36)

m=1

It should be noted that the parameters in (35) are independent of
parameter a or R, the signal-to-noise ratio.

The probability density function corresponding to
characteristic function (33) is
- u+b a]

M-t c
(u - bca) exp[-~;;g-—

pi(u) = for u > bca ’ (37)

"e
) (vco)
c C
and zero otherwise. The exceedance {gamma) distribution function
is an obvious generalization of (29), or (14) if MC is integer;

see [10; 6.5.3, 6.5.2, 6.5.13].

u - bca u - bca
Qc(u) = T MC' ——;;3——]//F(MC) = EMC-l{——;:E_—] for u > bca . {38)

For threshold value T, the false alarm and detection

probabilities follow immediately as

T - bC T - bca
PF = EM -1 w ! pD = EM -1 w_a ' (39)
c c c c

provided that T > bca.
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EXPONENTIAL WEIGHTS

We now restrict attention to the exponential weight structure

P S S N <m <M, with t = ¢ , (40)
m 1 -t
where we have normalized at wl = 1. Then, from (36},
1 -1 k 1 - tk 1 -« k-1 1 + t + t2 + v ¢ tk—l
Wy = (1 = t) K = [1 - t) Py (41)
1 - 1l + ¢ 4+ 7 + + r
In particular,
W. =1 W = 1 -rl1l+ ¢t W. = [l - r)z 1 + t + t2 (42)
1 2 1 -t1 4+ 3 1 - ¢ 1+ 1 + r2

The parameters in (35) then follow by substitution as

2 3 2
w -6 G- 1ot (Lt t)3 [1 + r2] (43)
c 3 2 1 -1 1+ 2y
1-:3) @-1+¢3) Lyt

+
cr
[ ¥

2
w=l"r l+t z'b= (1—tt)(!-—t) . (44)

¢ 1 -~ t2 1+ ¢ (1 + r)2 (l + t + tz)

+
"~

For equal weights, Vo T 1/M, we get the usual reduction to

2 -
w, =1, W, = i/M, Wy = 1/M%, giving M, = M, w_ = i/M, bC = 0.

1
Furthermore, it is shown in appendix B that additive constant bc
in (33) and (37), as determined from (35) and (36), is never

negative, for any nonnegative weight structure {wm}.
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GRAPHICAL RESULTS

The first example we consider here is M = 25, ¢ = ,75049209,
for which (43) gives MC = 4; again, the reason for the particular
choice of r is made so that MC is integer and (39) can be used.
The approximation afforded by (39) is superposed (dashed lines)
in figure 24 on the exact results (solid lines) obtained from
(25). 1Increasing M to 64 and changing r to .75049170, so that M,
is maintained at 4, generates virtually the same approximation.
The fit is poor and rather optimistic at the left edge of the
figure, due to the small value of M., namely 4.

For M = 50 and r = .,96915298, M. is increased to 32 and the
results are compared in figure 25. Now, the fit afforded by the
constant plus chi-squared approximation is rather good over the
entire range of false alarm and detection probabilities shown; in
fact, the approximation is optimistic by about .1 dB on the left
edge of the figure. The reason for this development is the

larger value of the effective number of samples, M namely 32.

c’
Two more results, for M, equal to 64 and 128, yield similar
conclusions in figures 26 and 27, respectively. Again, the
exponential weight structure was employed. However, the goodness
of fit of the constant plus chi-squared approximation is not
limited to this type of weights, but in fact applies to arbitrary
structures. To back up this statement, an example of uniformly
distributed random weights for M = 133 and MC = 77.971 is

displayed in figure 28; the overlay, which used M, = 78 in

approximation (39), is seen to be very good for this value of M.
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APPLICATION TO EIGENVALUE PROBLEM

Earlier, in (10) and [8; (24)], a particular characteristic

function was given which has occurred in a number of statistical

analyses. That characteristic function, in normalized form, is

M -1

£ (8) = T—T{l - ia(l + R xm]} , (45)

m=1

where R is the per-sample signal-to-noise ratio and {xm} are the

eigenvalues of the normalized covariance matrix P of the fading

signal components. By expanding the 1n of (45) in a power

series in i, the cumulants of random variable x are found to be

M Mk
1 k k n .n
k-1) 7 Xx(k) = }Z:‘l R A - EE: ji:[n) R dp =

m=1 m=1 n=0
k
- M+ }E:(ﬁ] r" tr[p“) for k > 1 , (46)
n=]1

where we have used the simplifying result in appendix C regarding

sums of powers of eigenvalues. 1In particular, there follows

from (46), the first three cumulants of x in terms of tr(Pn):
xx(l) = M 4+ R tr(P)

4

X, (2) = M + 2R tr(P) + R? tr(p?) ,

%xx(3) =M + 3R tr(P) + 3R% tr(P%) + R tr(P>) (47)
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PARAMETERS FOR CANDIDATE APPROXIMATION

In this section, we will approximate exact characteristic
function (45) by the form employing the constant plus chi-squared
idea again, namely

exp(i&bd)

M
(1 - iEwd)

£08) = - exp(iabd - My In(1 - iawd)) . (48)

d

The cumulants are given by a form very similar to (34), and in
particular, the first three (scaled) cumulants of characteristic

function (48) are
X:.(1) = M, ws + b (2) = My we , Ex.(3) =M, w3 (49)
d d Ya d ' X4 d%¥d + 3Xa d ¥a -

If the first three cumulants, xd(k) for k=1,2,3, were specified,

we could then solve (49) for the required parameters according to

X3(2) x4(3)/2 x4(2)

" T e

d

w4 _ingT” . bd = xd(l) - 2373775 . {50)
Now, we set the cumulants of approximation (48) equal to the
exact cumulants given by (47), and then solve (50) for the
required parameter values. Then, approximation (48) to exact
characteristic function (45) is available for numerical
evaluation. If cumulants {xx(k)} for k=1,2,3 can be evaluated
either analytically (via eigenvalues {Xm} in (46) or by the trace
relations in (47)) or numerically (estimated via finite time
averages), then the parameters in (50) can be determined and the

corresponding ROC found.
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EXACT PERFORMANCE OF (45)

I1f signal-to-noise ratio R = 0 in (45), then
fx(E) = (1 - iE)"M and there follows, in a manner similar to
(14), Q,(u) = E, ,(u) and P, = E, ,(T) for threshold T.

If R > 0 and all the eigenvalues {km} in (45) are distinct,

then, in a manner similar to (21), we can express

M

Bm(R)
fx(E) = }Z: ‘ ’ (51)
o1 - 15(1 + R xm]
where coefficients
[1 + R xm)"‘l
Bm(R) = M for 1 < m < M . (52)
M1 || (- M)
k=1
k#m

The exceedance distribution function is then

Q, (u) = Zsm(n) exp[l—:;—-}-\;] for u >0, R>0, (53)

- T
PD = ZBN(R) exp(m] for T >0, R> 0. (54)

The eigenvalues {km} of normalized covariance matrix P are
independent of signal-to-noise ratio R; however, coefficients

{Bm(R)} are dependent on R and explicitly indicated so.
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GRAPHICAL RESULTS

The only example that we consider here is a covariance matrix

m-n
Dl l.

P={p _}, where Pon = In particular, for M = 10 and

mn
p = .5, the M eigenvalues {Am} of P were evaluated and the
results on page 55 were used for an exact evaluation of the
detection and false alarm probabilities; these are displayed as
solid lines in figure 29.

Then, we returned to matrix P, ignored the knowledge of the
eigenvalues, and instead employed the trace relations in (47) and
appendix C to evaluate the cumulants of random variable x. These
were substituted in (50) to determine the parameters of
characteristic function (48), as explained in the sequel to (50).
Then, the method of [2] was used to obtain the corresponding ROC.

These results are overlaid as dashed lines in figure 29, for
three selected values of signal-to-noise ratio R (in decibels).
The agreement for small signal-to-noise ratios is very good, and
can be explained by observing that (45) approaches the chi-
squared characteristic function in this case. Approximation (48)
is also excellent for very small false alarm probabilities,
despite the fact that the equivalent number of samples, My is
rather small; for example, the three curves in figure 29 for
R=2,5,8 dB have Md = 5.79, 4.83, 4.31, respectively.

Another example for M = 32, p = .5 is displayed in figure 30.
Here, the values of My for the four overlays, R = -2,0,2,4 dB are
24.1, 20.6, 17.6, 15.4, respectively. These larger values of Md

account for the improved fit to the exact results.
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In this section, we will
fits to a specified characte

cumulants (or moments) throu

GAUSSIAN PLUS CHI-SQUARED FI

The initial fourth-order
the characteristic function

variable plus a chi-squared

TR 8753

MATIONS FOR AREBITRARY WEIGHTS

consider a couple of fourth-order
ristic function and will match

gh fourth-order.

T

fit of interest here corresponds to

of a (nonzero mean) Gaussian random

variate. That is, the candidate is

. 1
exp(itb, - FE%c] , 1,2
£(8) = Tl cxp(libf - 8%, - Mg In(1 - u:wf)]
(v - vewg)
{55)
The first four cumulants of characteristic function (55) are
Xe(1) = b + M, w Xe(2) = cp + M, w?
£ f £ "f f £ £ "f '
1 3 1 4
fxf(3) = Mf VE Exf(4) = Mf We (56)
I1f the cumulants are specified, the parameters for
characteristic function (55) can be determined explicitly as
(xg(3)72)° Xg(4)/6
M, = , W, = memmmme—eee
£ [xgtarve)? B Xgl3)72
(x¢(31/2)3 (xg(31/2)?
b, = X (1) - r Ce = X (2) (57)
f f (xf(4)/6]2 £ f xf(é)/6

Numerical results will be pr

esented in a later section.
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NON-CENTRAL CHI-SQUARED FIT

The other fourth-order fit that we consider corresponds to a
generalized non-central chi-squared variate, namely

characteristic function

£ - - - _
g(E) M_ 1In(1l 1£wg} (58)

[1 - iEwg)Mg

This is called generalized because we do not force cg = wg.

The In of (58) can be expanded in a power series in ig:

&b
exp **i“fﬂ—— .
1 - 1Ecg ( i&b
= exp —_g

+ ™ + @

1 o : j 1,. k

n fg(E) 1E.bg 2{:(1{Cg) + Mg zz:k(xawg) (59)
j=0 k=1

The first four cumulants of this characteristic function are then

1) = b M 7 2) = 2 M ’
Xg(1) g " g Yg Xgt2) bg Cg * Mg vg

1 2 3 1 3 4
— 3 = ’ - = 4 . 60
2Xg( ) 3 bg Cg + Mg wg 6x9(4) bg cg + Mg wg (60)

The inversion of these nonlinear equations, for the parameters in
terms of the cumulants, is not possible in closed form, as it was
for candidate characteristic function (55). This limitation
tends to discourage use of the non-central chi-squared
approximation (58). However, in appendix D, an efficient
numerical procedure for solving (60) for the required parameters
is developed and programmed. Application of this approximation

procedure is deferred to a later section.
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PERFORMANCE IN STEADY STATE NOISE

Up to this point, the number of samples, M, has been finite,
both for signal-present as well as signal-absent; then, the noise
output of the exponential integrator, (27) or (40), has not
reached steady-state. 1In this section, the number M of noise
samples will be set equal to =, thereby allowing the integrator
noise output to reach steady state. However, the number, N, of
samples containing signal (if present) will remain finite.

This situation arises in practice, for example, when the
precise arrival time of the signal is unknown. The use of
surplus envelope-~squared samples {zm}, for m > N, does not
improve performance, since these particular samples are always
noise-only; in fact, these extra samples always degrade
performance, the exact amount depending on the relative sizes of
weights {wm} for m > N compared to m ¢ N. Here, we will give a
method for quantitatively assessing the impact of these surplus

noise-only samples on the operating characteristics.
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CHARACTERISTIC FUNCTION

The characteristic function of the decision variable is an

obvious generalization of (7) to the form

£ (€) = ﬂ[1 - iawmam) , (61)

where the signal-to-noise ratio parameter a  now takes the form

a =

1 for noise-alone
m

} for 1 <m < M=o, (62)
1 + Rm for signal-plus-noise

The particular case that will be considered at length, here, is
that of a finite-duration constant-strength signal, which is

accommodated mathematically by setting

R for 1 < m <N
R, = . (63)
0 for N<m <M==
When signal-to-noise ratio R is equal to zero, that is,
signal-absent, the characteristic function in (61) reduces to
-1
-]
E () = I l[l ST (64)
m=1
Unfortunately, even for the exponential averager,
w o= (1-t) ™Y for 1 ¢mM=w, (65)

m > pa

the noise-only characteristic function in (64) takes a form,
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o -1

Ex(a) = W(l - i& (1-1) r“"l] , (66)

m=1

which is not expressible in closed form; see [11; (89.18.3)].
(Likewise, the finite product cannot be simplified; see

[11; (89.18.2)].) This necessitates termination of the infinite
product in (66), being sure to keep the remainder below an

acceptable tolerance; this issue is addressed in appendix E.

CUMULANTS

For general characteristic function (61), the cumulants are

TF:%TT Xy (k) = EZ:("m a)* for 1 ¢k . (67)
m=1

For the special case of the exponential averager (65) and the

finite-duration signal (63), these cumulants reduce to

k
TE?%TT X, (k) = Ll_:_ﬁ%—[(l + R)*(1 - :k") + rkN] . (68)
: 1l -1

At the same time, characteristic function (61) becomes

-1

N
e 1) - W(l CiE (l-r) r‘“"l(l + R’] H(l - i (1-1) rm—l)

m=1 m=N+1

(69)
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In particular, for noise-alone, then R = 0 and (68) reduces

to
(kil)l ix(k) (i N i;k - il+~ r)k:lrk_l {70)
The three lowest-order cases are
) - 1 - ¢ 1 (1 - r)?
Xe (1) =1, X, (2) T+ ' 3%3) = (71)

1l + ¢+ 1

For signal-present, R > 0, the three lowest cumulants are,

from (68),
Xx(1)=1+R-RrN,
1 -r 2 2N 2N
XX(Z)ﬂl——_’_"—?[(l-G-R) [l—r )+r ],
1y (3) = L= £)? {(1 + 3)3(1 3”) + 3”] (72)
7Xx 2 -t t :

l +r + ¢

Here, N is the number of signal components, R is the signal-to-
noise ratio per sample, and r is the exponential decay factor for
the weight structure (65).

In the evaluation of the signal-present characteristic
function (69), the second product will have to be terminated at a
finite limit m = L (> N). The error due to this truncation is

addressed in appendix E.
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GRAPHICAL RESULTS

An example of the results in this section for M = », N = 32,

f

r .9, is displayed in figure 31, as obtained via exact results
(66) and (69), along with the truncation procedure of appendix E.
Superposed as dashed lines are the results of using the constant

plus chi-squared approximation (48), where the parameters are

obtained from the cumulants, according to (50). The cumulants
themselves are given by (72). The effective number of samples,
M4 in (48), takes on the values 10.680, 10.676, 10.673, and

10.672 for the four signal-to-noise ratios of 0, 2, 4, and 6 dB
indicated in the figure. This relatively small value of Mg is
the reason for the discrepancy in figure 31 between the exact and
approximate results.

Figure 32 is drawn for M = @, N = 50, and r = .96915298;
compare figure 25, for which M. = 32. The values of M3 for the
three overlaid curves for signal-to-noise ratios equal to -2, 0,
and 2 dB are 33.531, 33.030, and 32.624, respectively. These
larger values, for the effective number of samples, lead to
better agreement in this figure; in fact, the approximation is in

error by only .15 dB along the left edge of the figure.
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BLOCK EXPONENTIAL WEIGHTING

In this section, we again consider a weighted energy detector
in steady state, that is, M = ». However, the averager now
operates on blocks of data points which are equally weighted, but
which are themselves exponentially weighted. That is, the

decision variable x is now given by

X = Ezzwm Z. {73)

m=1
where the weights {wm} are
(1 for 1 <m¢g B)
1-r |F for B <m(< 2B
Wm=--ﬁ—< 2 > . (74)
r for 2B < m £ 3B
\: . Y,

Here, B is the block size and the weights have been normalized
at W, = 1. The following diagram illustrates the block

exponential weighting structure.

e B
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SIGNAL STATISTICS
The signal, if present, occupies the first N samples of sum
(73), where
N
J EE (75)

is presumed integer; that is, J is the number of blocks occupied

by signal (when present). The signal-to-noise ratio parameter is

1 for noise-only
a = for 1 {m <N, (76A)
1+R for signal plus noise

and

a =1 for N <m¢< o, (76B)

CHARACTERISTIC FUNCTION

The characteristic function of x in (73) for signal present

is, using the independence of the {zm},

. -1
£(8) = ﬂ(l - iawmam] -
m=1
J-1 _ © _ ~B
- ﬂ(l-ia%‘-ﬂ a+m) | [(@-aeiZEI) 0 o
j=0 j=3

Again, an infinite product is required and the truncation

procedure given in appendix E is directly relevant.
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CUMULANTS

The cumulants of decision variable x follow readily from

(77), upon expansion of 1ln fx(E) in a power series in i&:

1 _ La-nymkt
k-1

T X, (K) [(1emr¥ (1-0%7) & %] for & 2 1. (78

lér+ec+r
The four lowest-order cumulants will be used in fitting the exact

characteristic function (77) by approximations (55) and (58).

GRAPHICAL RESULTS

Results for the operating characteristics for B = 4, J = 32,
and r = .95 are presented in figure 33. Thus, from (75), the
signal (when present) occurs on N = 128 samples. Superposed as
dashed lines is the approximation afforded by third-order fit
(33) and (39). The discrepancy is only .1 dB along the left edge
of the figure,.

‘Another example of block exponential weighting, for B = 4,

J =16, and r = .9, is displayed in fiqure 34. The dashed
overlay is again the third-order approximation (33), which is
optimistic by about .15 dB along the left edge of the figure.

The exact results from figure 34 are repeated in figure 35,
but now the overlays are the two fourth-order approximations (55)
and (58). The latter two approximations are indistinguishable
from each other over the entire range of probabilities displayed.
Furthermore, they differ from the exact results only by .05 dB at

the left edge of the figure.
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SUMMARY

The receiver operating characteristics of a variety of
weighted energy detectors, for Gaussian signals in noise, have
been investigated exactly and compared with five different
approximate procedures. The Gaussian and chi-squared
approximations have been found to be generally inadequate for
very small false alarm probabilities, while the generalized
chi-squared {gamma) and both fourth-order fits have yielded very
good results over the entire range of detection and false alarm
probabilities considered. The only limitation of the latter
approaches is the need to have additional cumulants (or moments),
since the first two cumulants are not always entirely adequate
for accurate performance predictions.

If the exact characteristic function for the decision
variable of a system can be determined, either analytically or
numerically, then the receiver operating characteristics can be
accurately evaluated by the method of [2], as done here.

However, there are occasions where it may be desirable or
imperative to use an approximate characteristic function, as for
example, when only a few low-order moments are known. In this
fashion, we can, for example, avoid the determination of
eigenvalues or avoid the evaluation of infinite products. Also,
the approximate forms will frequently be faster to compute than
the exact results. This report indicates the relative accuracies
inherent in some of the standard approximations and some of their

generalizations, which should be considered for future use.

75/76
Reverse Blank




TR 8753

APPENDIX A - GAUSSIAN APPROXIMATION

The characteristic function of interest was presented in (7):

M M -1
fx(E) = E{exp(iéx)} = T—T fz(wmi) = TaT[l - iawma) ’ (A-1)
m=] m=1

where {wm}, for 1 { m < M, are an arbitrary set of weights. The
mean and variance of random variable x were given in (9).
Now, if energy detector output x in (1) were a Gaussian

random variable, its probability density function would be

2
(u - wp )
pg(u) = ——i—g—— expi- -———53-— for all u , (A-2)
. 2 2
(2r) Ug og

where, from (9) and (4), we set

1 W

2
”g = or ’ og = or . (A-3)
1 +R (1 +R)%w

2

The exceedance distribution function corresponding to (A-2) is

© u - u
Q _(u) = J dt p (t) = 0[—9-——] for all u , (A-4)
g g Gg
u
where
t
$(t) = J dv (2n)7% exp(=v2,2) (A-5)

- D

is the normalized Gaussian cumulative distribution function.
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At this point, it is convenient to define an effective number

of samples, Mo, for an arbitrary set of weights {wm} as in (31)

1
M = = = w-— . (A"'G)

Here, we used (8) and (2).
If threshold T is utilized for a comparison with energy
detector output x for a decision on signal presence or absence,

then the approximate false alarm probability follows from (A-4):
. o= - 15 — —
Pp = Qq(Ti R=0) ¢(mi1-m) (A-7)

with the help of (A-3) and (A-6). Similarly, the approximate

detection probability is

P, = Q(T; R#0) = s(mi(1 - =5)) - (A-8)
Equations (A-7) and (A-8) produce the Gaussian approximation to
the cperating characteristics of the energy detector (1),
described by characteristic function (A-1). They depend only on
the single parameter LN defined in (A-6), in addition to the per-
sample signal-to-noise ratio R. That is, M and {wm} are all
collapsed intc the single parameter, effective number M-

An immediate obvious problem with (A-8) is that the limit of
detection probability PD’ as R » =», is not 1; in fact, it is
¢(M:] < 1. This drawback serves as a warning about the adequacy

of the Gaussian approximation.
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For the approximations in (A-7) and (A-8), we can explicitly
solve for PD in terms of PF' as follows. Let & be the inverse
function to ¢; see [10; 26.2.23]. Then (A-7) can be solved for

threshold T according to

-k
T=1-M" &(P) . (A-9)

Substitution of this result into (A-8) yields

L
P, = Q[Me R+ S(PF)] ) (A-10)
1 + R

It now follows immediately from (A-10) that, for specified P

13
and PD' the required signal-to-noise ratio R is
R = 2 (A-11)
Me - D
where
F = g(PF) , D = g(PD) . (A-12)

The result in (A-11) is a generalization of {1; (C-8) and (11)]
to the case of arbitrary weights {wm}. It is immediately obvious
from the denominator of (A-11) that the desired P, must be

smaller than Q(MZ].
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APPENDIX B - POSITIVITY OF PARAMETER bC

Here, we will show that the parameter bC in (35) is never
negative, regardless of the weight structure {wm}, provided that

wo 2 0. The Cauchy-Schwartz inequality states that

M 2 M M
2 2
> e <3 D
m=1 m=1 m=1
s 3/2
for any real quantities {am} and {bm}. If we let ay = v and
bm = wml/Z, then (B-1) yields
M 2 M M
2 3 .
Z Yo < Z wo Z wo o (B-2)
m=1 m=1 m=1
that is W2 < W, W where
T2 = 73 1Y
M
k
Wk = Ez: LA (B-3)
m=1
Therefore
"
bC = Wl - ﬁ; 2 0 . (B-4)
In addition, there follows
W
MC W =€q—SW1 . (B-5)
3
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APPENDIX C - TRACE RELATIONS FOR EIGENVALUES

Suppose MxM matrix P = [pmn] has eigenvalues {Am}, 1 <m <M.

Let A be the diagonal matrix of eigenvalues {Am} and let Q be the

normalized modal matrix of eigenvectors of P; see [12; section

1.13].

Then we can express matrix P in the form

P=20QAQT, (c-1)

from which there follows the k-th power

pk = g Ak QT . (C-2)

We now use the trace relation

tr(A B C) = tr(B C A) , (C-3)
to evaluate the trace of Pk:
M
er(P%) = trlo AF @T) = tr(A¥ oT @) = tr(A¥) - }Zix; . (c-4)
mel

That is, the sum of the k-th powers of eigenvalues {xm} can be

obtained from the trace of matrix Pk, without ever having to

evaluate the eigenvalues at all. 1In particular,

M M
}Z:xm = tr(P) = }Z:pmm , (C-5)
m=]1 m=1
M M
2 2
me = tr(p?) = Z b P (C-6)
m=]1 m,n=1
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M M
2:3 3_2:

Am = tr(P ) N °mn °nk Pkm - (C-7)
m=1 m,n, k=1

In order to compute the sums of the three lowest powers of the
eigenvalues of matrix P, we simply have to compute the three sums
on the elements of matrix P, as indicated in (C-5) through (C-7).
In fact, there is no need to compute matrices P2 or P3 either.
Thus, a seemingly difficult numerical chore is replaced by

straightforward simple summations of products of matrix elements,

yielding a very significant savings in complexity and time.
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APPENDIX D - INVERSION OF EQUATION (60)

For notational efficiency, we suppress all the g subscripts
in (60), let Y, = X(k)/{k-1)!, and set p = M w. The nonlinear

equations then take the form

Yy, =b+p., Y, =2bc+puw,

Yy = 3 b c2 + p w2 P 4 b c3 + p w3 . (D-1)

We solve the first two equations for p and b, getting

Yz_zylc ylw"Yz

P=—Vw-73c ' bP=<T73T - (D-2)

These guantities are now substituted in the third and fourth
equations in (D-1), resulting in the highly nonlinear pair of

coupled equations for ¢ and w:

c2 3 (y1 w - yz) + c 2 (y3 -y wz) + w (y2 w - y3) = 0 , (D-3)

C3 4 (YIW‘YZ) +C2 (Y4—Yl w3) + w (y2 wz" yd) “0 - (D-4)

The procedure we have adopted for solving these latter two

equations is to start with an initial guess for w as in (57),

namely
. xt4yze Yo )

then solve quadratic (D-3) for c; substitute this result into
(D-4) and compute the left-hand side; now vary w until the
left-hand side equals zero. Repeat these operations until ¢ and w
stabilize. Equation (D-2) can now be used to get final values of
p and b. This is the numerical procedure used in the main text.
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APPENDIX E - TERMINATION OF INFINITE PRODUCT

I1f we terminate the infinite product for the characteristic
functions in (66) or (69) at limit value m = L (> N), then the

neglected remainder product in the denominator is

2L+1
Rem = I_T(l - iE (1-1) rm‘l) =1 - jgfl - g2 E

Nt O(r3L).(E-1)
m=L+1

This relation enables a choice of L to control the neglected
remainder. For example, & = 200, L = 220, r = .9 leads to
Rem = 1 - i1.7E-8 - 1.4E-16. Thus, the £’ term and above can be
safely ignored. One final product in the denominator of (66), by
the factor 1 - iErL, will account for Rem and suffice for
complete accuracy, up to computer round-off error in the
characteristic function evaluation. For larger values of r, it
is necessary to increase the limit L; for example, £ = 150,
L =700, r = .,96915298 yields Rem = 1 - i4.5E-8 - 1lE-15,

1f we terminate the infinite product for the characteristic
function in (77) at limit value j = L (> J-1), the neglected

remainder product in the denominator is
Rem = ‘ !(1 —ig i ) - (- M) s s M (e
This is substantially the same as (E-1), where terms of the order

of rZL have been neglected.
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Two-Dimensional Convolutions, Correlations, and
Fourier Transforms of Combinations of Wigner Distribution
Functions and Complex Ambiguity Functions

Albert H. Nuttall

ABSTRACT

A number of new two-dimensional Fourier transforms of
combinations of cross Wigner distribution functions, W, of
convolution form or correlation form are derived. 1In addition,
similar relations are obtained for combinations of cross complex
ambiguity functions, x. Their great generality subsumes most of
the already known available properties, such as: the volume
constraint of magnitude-squared ambiguity functions; the
positivity of the convolution of two Wigner distribution
functions; and Moyal’s theorem. An example is displayed below:

dev'dt' exp(+i2nv’t-i2nfr’) xab(v+%v',t+5r') x;d(v-kv',t-%t’)
= Ifdt'df’ exp(-12nvt’+i2nf’'t) wab(t+%t',f+&f') w;d(t—%t',f—%f')

= W__(t+hT, f+hv) w;d(t-—%r,f-%v)

Extensions to contracted time and frequency arguments are
made, as well as to mixed products involving a Wigner
distribution function and a complex ambiguity function.
Additional relationships connecting the temporal correlation
function and the spectral correlation function complete a
symmetric set of very general relationships.

Approved for public release; distribution is unlimited.
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TWO-DIMENSIONAL CONVOLUTIONS, CORRELATIONS, AND
FOURIER TRANSFORMS OF COMBINATIONS OF WIGNER DISTRIBUTION

FUNCTIONS AND COMPLEX AMBIGUITY FUNCTIONS

INTRODUCTION

Over the years, a number of properties of integrals of
products of complex ambiguity functions (CAFs) or products of
Wigner distribution functions (WDFs) have been derived, such as:
the volume constraint of magnitude-squared ambiguity functions
[1; page 308], the positivity of the convolution of any two WDFs
[2; (106)], and Moyal’s theorem involving the volume under the
square of a WDF [3]. Now, it appears that these are very special
cases of a general class of two-dimensional Fourier transforms of
combinations of CAFs and WDFs with delayed or time-reversed
arguments.

We begin by deriving a general one-dimensional transform
relation involving two arbitrary complex waveforms and their
Fourier transforms. An application of this relation to energy
density spectra yields three alternative expressions for the
output correlation of a filtered time function. This general
transform relation is also the basic tool for setting up the two-
dimensional transforms that are the subject of succeeding
sections. The extreme generality of the two-dimensional
relations allows for a large number of special cases; some of
these are pointed out, but undoubtedly there are additional ones

not listed here.
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When we begin our two-dimensional transform investigation, we
do not immediately specialize to WDFs or CAFs. Rather, we first
consider a set of four general functions, each of two variables,
all of which are related to each other by Fourier transforms. We
show that two-dimensional Fourier transforms of products of pairs
of these general functions are all equal to a common value,
although that value cannot be expressed in any simple closed
form. These relations are derived for convolution type
operations as well as for correlation operations.

When we make a specialization of these results to waveforms,
relatively simple closed form results, in terms of products of
WDFs and CAFs, are obtained for these two-dimensional transforms.
And when the arguments of these relations are further specialized
in value (such as zero), some of the currently known relations
involving CAFs and WDFs result.

Extensions of these results to time contracted or expanded
arguments are made in the appendices. Again, specializations to
waveforms yield closed form results, in terms of products of WDFs

and/or CAFs.
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ONE-DIMENSIONAL TRANSFORM RELATIONS

Function g(t) is an arbitrary complex function of real
argument t, which will be thought of as time. 1Its Fourier

transform will be denoted by complex function G(f), where
G(f) = jdt exp(-i2nft) g(t) . (1)

Integrals without limits are along the real axis and over the
range of nonzero integrand. Argument f is a real cyclic
frequency, not a radian frequency. The inverse Fourier transform

relation to (1) is
g(t) = de exp(+i2nft) G(f) . (2)

The Fourier transform pair in (1) and (2) will be denoted by
g(t) e G(f) . (3)

Similarly, h(t) and H(f) will be a Fourier transform pair.

TRANSFORM OF PRODUCT OF WAVEFORMS

The variables v,a,8,u,y are all real in the following. A

generalization of Parseval’s theorem is then possible, namely

fdt' exp(-i2nvt’) g(at+gt’) h*(pt+yt’) = exp[iz““tg§§# ] 8

x Idv' exp(iva't(aY—ﬁy)] G(y[v'+ 7%?}} H*(s[v'— 5%7)] ¢ (4)
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where it is presumed that § # 0 and vy # 0. This result may be
derived by substituting for g according to (2), interchanging
integrals, and using (1) for Fourier transform pair h(t) e H{(f).

A more symmetric form for relation (4) is available, if desired:
4 1 ’ ’ .__t....... * L _._'..t_— =
fdt exp{(-i2nvt’) g[ﬁ[t + Zﬁy)] h (Y(t Zﬁy)}

Jdv' exp(+i2nv’'t) Giy[v'+ 5%7)] H*[ﬁ[v’- 5%7]} . (5)

SPECIAL CASES

By specializing the parameter values in (4), several
interesting and useful results can be obtained. For example, 1f
we take y = B, y = -a, then we obtain a combined one-dimensional

Fourier transform and correlation:
Jdt' exp(-i2nvt’) g(Bt’+at) h™(Bt’-at) =

vV

= jdv’ exp{iva'tZaB} G(Bv'+ 5%} H*[ﬁV'° 53) . (6)

On the other hand, if we take vy = -8, p = a in (4), there
follows a combined one-dimensional Fourier transform and

convolution:

Idt' exp(-i2nvt’) g(at+pt’) h*(at-pt’) =

= [dv' expliznv't2aB| Gls> +Bv'| " [5> -gv']| . (7)
28 28




TR 8759

Further specialization to the specific numerical values

vy=8=1, -u=a=1%, in (6) yields
Jdt' exp(-i2nvt’) g(t’'+&t) h*(t'—&t) =
= Jdv' exp(+i2rnv’'t) G(v'+kv) H*(v'-&v) . (8)

Alternatively, the choice -y = g8 = &%, py = a =1 in (7) yields

Idt' exp(-i2rvt’) g(t+kt’) h™(t-kt’)

= Idv' exp(+i2nv’'t) G{v+iv’) H*(v—%v’) . (9)
APPLICATION TO ENERGY DENSITY SPECTRA
Case 1. Suppose that we choose
= 2 2
G(v) = [X(v)|® , H(v) = [¥(v)|®, (10)

which are the energy density spactra of waveforms x(t) and y(t),
respectively. Then g{t} = ¢xx(t) and h(t}) = ¢yy(t), where ¢xx(t)

is the auto-correlation function of complex waveform x(t):
Yo (t) = Idu X(t +u) x (u) . (11)

The use of (10) and (11) in (B} yields
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I,(t,v) = fdv' exp(+i2nv't) IX(v'+%v)]2 |Y(v'—8v)|2 =

- Jdt' exp(-i2nvt’) ¢, (t’+kt) ¢;y(t'-%t) . (12)

The last term in (12) is identical to wyy(kt-t').

The special case of v = 0 in (12) reduces to

I,(t,0) = Idv' exp(+i2nv't) |X(v')(2 |Y(v')|2 =

[ * "
- fdt Yy (E7HE) Yo (E7E) (13)
The additional restriction to t = 0 becomes

1,00,0) = fav' Ix(v:)|? |y(vr)f? =

= Jatr w0 we) (14)

Case 2. Here, instead, make the identifications

G(v) = X(Vv) Y(v) = H(v) . (15)

Then

g(t) = €, (t) = [du x(u) y(t-u) = n(t) , (16)

which is the convolution of x(t) and y(t). Substitution of (15)

and (16) in (8) gives
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I (t,v) = jdv' exp(+i2nv't) X(v'+kv) Y(v'+kv) X (v'-kv) Y (v’ -%v)

3 ’ [ * '
= fdt exp(-i2rnvt’) ny(t +Xt) ny(t kt) . (17)
Setting v to zero yields

I,(t,0) = fdv' exp(+i2nvt) |x(v')|? ly(v)|? =

]

fdt' Cpy (/L) C;y(t'-%t) . (18)

Finally, also setting t equal to zero,

1,00,0) = fav' Jx(v)l? Jxev)? = fJaer jeenl? . a9
Case 3. Now identify
G(v) = X(v) Y'(v) = H(v) . (20)
Then
g(t) =, (t) = au x(u + ¢) y(u) = het) , (21)

which is the cross-correlation of x(t) and y(t). The use of (20)

and (21) in (8) leads to

I3(t,v) = jdv' exp(+i2rv t) X(v'+kv) Y (v +v) X" (v'-kv) Y(v’'-%v)

= Idt' exp(~-i2nvt’) ¢xy(t'+8t) ¢;y(t'—5t) . (22)

The result of setting v to zero is
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I,(t,0) = Idv' exp(+i2nv't) IX(v')l2 IY(v')Iz =

’ r * [}
= fat by (E74IE) W) (E7-5E) (23)
When t is also set equal to zero, (23) reduces to
15300,0) = fav' [x(v)1? |yv)|? = faer fu e (20

It should be observed that the upper lines of (13), (18), and

(23) are identical to each other; that is,
I,(t,0) = I,(t,0) = I (t,0) . (25)

Therefore, the lower lines of (13), (18), and (23) furnish three
equal alternative expressions involving autocorrelations,
convolutions, or cross-correlations, respectively.

There are many other possibilities for identifications of G
and H in (8), besides (10), (15), and (20). For example, we

could take
G(v) = |X(v) 12 Y(v) ., H(v) = Y(v) . (26)

However, it may be shown that this choice leads identically to
result (13) when v is set to zerc; so not all selections yield
new relations. Additional convolution type relations may be

obtained if (9) is used instead of (8).
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GENERAL TWO-DIMENSIONAL TRANSFORM RELATIONS

In this section, we will consider a set of four general
functions, each of two variables, which are related to each other
by Fourier transforms. These four functions are indicated in
figure 1, where a two-headed arrow denotes a Fourier transform
relationship. These functions are, for the moment, arbitrary
complex functions of two variables; they are not necessarily

Wigner distribution functions or complex ambiguity functions.

R(t,t) & x(v,1)

| I

W(t,f) é— &(v, 1)
Figure 1. General Two-Dimensional Functions
The paired transform variables, here and for the rest of the

report, are t ¢ v and t ® f. The detailed Fourier transform

interrelationships between the four functions in figure 1 are

X{v,t) = Idt exp(-i2nvt) R(t,t) , (27)
R(t,t) = Jdv exp(+i2nvt) x(v,t) , (28)
W(t,f) = Idr exp(-i2nfr) R(t,r) , (29)
R{t,t) = de exp(+i2nfr) W(t,f) , (30)
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$(v,f) = Idt exp(-i2nvt) W(t,f) , (31)
W(t,f) = Jdv exp(+i2nvt) &(v,f) , (32)
$(v,f) = Idt exp(-i2nfr) x(v,t) , (33)

(34)

x{(v,t) = de exp(+i2nfr) &(v,f)

A double Fourier transform relationship exists between R and ¢,

as well as between W and x.

TWO~-DIMENSIONAL CONVOLUTIONS

We repeat (9) here, but with a change of variables t + 1 and

v 2 f:

Jdr' exp(-i2nftr’) g(r+kt’') h*(r—kr') =

= fdf' exp(+i2nf't) G(f+kE’) HY(f-%Ef’) . (35)

Let x; and x, be two different functions of the type indicated in

figqure 1, and consider (35) with the assignments

g(r) = X (vasT) + h(T) = Xy(Vp,T) -« (36)
The corresponding Fourier transform pairs for (36) are

G(f) = &,(v, . f) , H(f) = &5(v, ), (37)

upon use of (33). There follows, from (35),

10
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Idr' exp(-i2nfr’) xl(va,r+8r’) x;(vb,rvﬁt') =
- [df' exp(+i2Mf ) & (v, E44E7) 5(v,, £-%E%) . (38

See appendix A for the most general result of this form.

If we now let vy = v+iv’ and vy, = v~%y’ in (38), then an
additional Fourier transform on v’ yields the middle two lines
in (39) below. More generally, in a similar fashion to that used

above, we find that the combined two-dimensional convolution and

Fourier transform can be expressed in four equivalent forms:

I(v,f,t,t) = (39)

= Jdt'dt' exp(-i2nvt’-i2nfr’) Rl(t+%t',t+%t') R;(t—%t',r-%r’)

(]

= dev'dt’ exp(+i2nv’'t-i2nfr’) xl(v+%v’,r+%r') x;(v~%v’,t-kt')

nIdv'df' exp(+i2nv't+i2nf’'t) él(v+8v',f+%f’) ég(v—sv',f—af’)

- PJdt’df’ exp(-12MVt +i2RE T) W (t+ht’ E+hE’) Wy(t-ht’, f-4E')

Alternative forms of (39) are available; for example, the

last line can be written in the more typical convolution form

JIdt'df' exp(-i2nvt +i2nf't) Wl(t',f') w;(t—t',f-f’) =

= % exp(-invt+infr) I(%v,%f,%t, %) . (40)

11
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TWO-DIMENSIONAL CORRELATIONS
Here, we use (8) with identifications
g(t) = Ry(t,7 ) » h(t) = Ry(t,ty)
G(V) = X (viT) + B(V) = x,5(v,1y) (41)

Then there follows immediately

1 ' ’ * ’ =
jdt exp(-i2nvt’) Rl(t +5t,ta} R2(t Ht,rb)
= jdv' exp(+i2nv't) xl(v'+sv,ra) x;(v'—%v,tb) . (42)
Now let Ty = T'+%t and Ty = Tt’~-%t, and Fourier transform on

t’. The result is the first two relations, given below, of four
equivalent forms of the combined two-dimensional correlation and

Fourier transform

J(v,f,t,t) = (43)

dt’dr’ exp(~-i2nvt’'-i2nfr’) Rl(t'+kt,r'+kr) R;(t’~8t,t’—%t)

= Pdv'dt' exp(+i2nv’'t-i2nfy’) xl(v'+sv,t'+kr) xE(v'—%v,r’—%r)

*

2

= [[avraf’ exp(+iznvt+iznfrr) o (v, £ 4kE) 85 (v' -y, £7 ki)

(dt df’ exp(-i2nvt’/+i2nf’t) Wy (tr4hst, £relE) W (t -kt £ -kf)

Alternative forms to (43) are possible; for example, the last

line can be expressed in the more typical correlation form

12
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fjdt’df' exp(-i2nvt'+i2nf'r) Wl(t',f’) w;(t'-t,f'-f) =

= exp(-invt+infr) J(v,f,t,t) . (44)

MIXED RELATIONS

The results in (39) and (43) all involve two W(t,f)
functions, or two x(v,t) functions, etc. However, it is possible
to obtain relations which involve, for example, one W(t,f)
function and one x(v,r) function. As an illustrative example,
consider (9) with g(t) = wl(t,fa) and h(t) = Xz(fb't)' Then,

from figure 1, G(v) = il(v,fa) and H(v) = Qz(fb,v), giving
. *
fdt’ exp(-1i2nvt’) wl(t+8t’,fa) xz(fb,t—%t') =
= Jdv' exp(+i2nv't) 61(v+%v',fa) Qz(fb,v—%v') . (45)

If we now let fa = f+%f’' and fb = f-4f', and perform a

Fourier transform on f’, there follows immediately

ffdt'df' exp(-i2rvt +i2nf T) Wy(t+ht’ £+hE7) X5 (E-hE" t-ht’) =
(46)
= dev'df' exp(+i2nV t+i2RE T) &) (vHhv' E+hEC) &5 (£-RE',v-hv') .

Thus, a combined two-dimensional convolution and Fourier
transform of a W(t,f) function and a x(v,t) function can be
expressed in terms of two #(v,f) functions. (Strictly, some of

the arguments are reversed, as seen in (46).)

13
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If, instead, we use (8) with g(t) and h(t) assigned as above,

then we obtain
fdt' exp(-i2nvt’) wl(t'+%t,fa) x;(fb,t'—kt) =
= fdv’ exp(+i2nv’'t) Gl(v'+%v,fa) ¢;(fb,v’—%v) . (47)

Letting fa = fr+kf, fb = f'-%f, and performing an additional

Fourier transform on f', there follows

jfdt'df' exp(-i2nvt +i2rE T) Wy(t +kt, £ +hf) x5 (£ -4E, ' -4t) =
(48)

= jjdv'df' exp(+12mv t+i2nE 1) &) (v +hy, £ +kf) &5 (£ -HE,v' -kv)

Here, a combined two-dimensional correlation and Fourier
transform of a W(t,f) function and a x(v,t) function can be
expressed in terms of two #(v,f) functions. (Again, some
arguments are reversed or replaced. However, the first argument
in a x function is always a frequency variable, while the second
argument is always a time variable; similar restrictions hold for

the remaining functions R, W, & in fiqure 1.)

14
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SPECIALIZATION TO WAVEFORMS

In the previous section, the functions R, W, x, ¢ were
arbitrary, except that they were related by Fourier transforms
according to figure 1. Here, we will specialize their forms,
thereby enabling more explicit relations for their two-
dimensional convolutions and correlations.

For arbitrary complex waveforms a(t), b(t), c(t), d(t), let

R (t,T) = a(t+hT) b*(t-%1) R (E,T) (49)

Ry(t,T) = c(t+hr) a* (t-%t) Roq(trT) - (50)

These are known as (cross) temporal correlation functions (TCFs).
Thus, Rab(t,t) is the "instantaneous" cross-correlation between
waveforms a and b, corresponding to center time t and separation

(or delay) time t. Then, from (31) and (29), or [4; (35)], there

follows

Ql(v,f) = Qab(v,f) = det dr exp(-i2nvt-i2nfr) Rab(t,r)

A(f+4v) B (f-%v) , (51)

(v, £) = 8_y(v,£) = C(£+4v) DY (£f-%v) . (52)

These functions are known as (cross) spectral correlation
functions (SCFs). (In [4], the notation A(v,f) was used for this
function; however, A(f) will be used here for the Fourier
transform of waveform a(t).) The SCF corresponds to center

frequency f and separation (or shift) frequency v.

15
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The Fourier transform relationships in fiqure 1 and equations
(27) ~ (34) still hold true, but now are specialized to the
waveform cases above. Specifically, figure 2 illustrates the
four two-dimensional functions for waveforms a(t) and b(t), where
now W, = W, is a cross Wigner distribution function (WDF) and

X1 = Xab is a cross complex ambiguity function (CAF).

TCF Rab(t,t) — xab(v,t) CAF

I I

WDF W, (t,f) e— &, (v,f) SCF

Figure 2. Two-Dimensional Functions for Waveforms

The detailed Fourier transform interrelationships are now

xab(v,t) = Jdt exp(-i2nvt) Rab(t,r) ' (53)
Rab(t,t) = Jdv exp(+i2nvt) xab(v,r) ’ (54)
Wop(t/ f) = Idr exp(-i2nfr) R, (t,T) , (55)
Rab(t,t) = jdf exp(+i2nfrt) wab(t,f) , (56)
Gab(v,f) = Jdt exp(-i2nvt) wab(t,f) ’ (57)
Wab(t,f) = Jdv exp(+i2nvt) §ab(v,f) , (58)

16
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Qab(v,f) Jdt exp{-i2nfry) xab(v,r) ' {59)

Xap(VrT) = de exp(+i2nfr) Qab(v,f) . (60)

The function waa(t,f), for example, is an auto WDF, since it
involves only one waveform, a(t). We will frequently drop the
terminology auto and cross, when possible without confusion, and
let the notation indicate the particular case.

It will be found advantageous for future purposes to define a

scaled and contracted WDF according to

=1
Eab(tlf) = zwab(%tr%f) . (61)

GENERAL CROSS PROPERTIES

Due to the restriction of form taken on by the TCF in (49)
and the SCF in (51), the four functions in figqure 2 obey some

symmetry rules; they are

*
Rab(tl_t) = Rba(tlt) '
*
Qab(—\’,f) = Qba(\),f) R
Xab("vl"r) = X;a(\’lr) '
*
Wab(t,f) = Wba(t,f) . (62)

17
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AUTO PROPERTIES

When waveform b(t) = a(t), some specializations follow:

*
Raa(tl'r) = Raa(tlt) t
*
q’aa('vlf) - Qaa(\’lf) ¢

*
Xaa(-vl-t) = xaa(vpr) '
waa(t,f) = real for all t, £, a(t), (63)

with the only significant specialization being the realness of

WDF waa(t'f)‘ waveform a(t) can still be complex.

SOME SPECIAL CASES

The ordinary cross-correlation of two waveforms a(t) and b(t)

is a special case of a CAF:
= jdt b* = 0 64
Yaplt) = a(t) (t-1) = Xgp(0,T) - (64)
The ordinary cross-spectrum is then a special case of an SCF:
. _ *
Yab(f) = Idr exp(-i2nfr) ¢ab(r) = ¢ab(0,f) = A(f) B (f) . (65)
The autospectrum is then simply
_ _ 2
Y (f) = ¢ _(0,f) = |A(E) ], (66)

which is always nonnegative.
The ordinary convolution of two waveforms a(t) and b(t) is a

special case of a WDF:

[ac ae) B t-r) - Tw_ (ut,0) = W, (t,0) . (67)

18
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REAL WAVEFORM a(t)

In addition, if waveform a(t) is real, the following {(auto)

properties hold true:

Raa(t,-t) = Raa(t,r) and Raa is real ,
’aa(“v-f) = ’aa(vff) '

Xaa(vr‘r) = Xaa(\’lr) ’

Woalts £) = Waaltsf) (68)

The situation for a real waveform a(t) is summarized in figure 3

below.

T T
*
R X X
t v
.R *. -
X X
TCF CAF
f f
W 8" 8
t v
.W 0*. )
WDF SCF

Figure 3. Symme“ry Properties for Real Waveform a(t)
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MIRROR-IMAGE RELATIONS

For general complex waveforms a(t) and b(t), define

mirror-image functions
a(t) = a(-t) , b(t) = b(-t) . (69)

Then it follows directly that the voltage density spectrum of

mirror-image a(t) is
A(f) = Idt exp(-i2nft) a(t) = A(-f) , (70)

which is the mirror-image of A(f). Also, there follows

~

Rab(—t,—r) = Rgp(t’t)

’ab(—vl_f) = Qé?(v,f) ’

-

xab('v'-r) = Xab(vrr)

H

Wop(-t,-f) wég(t,f) (71)

Thus, the mirror-image property for A(f) carries over into all
the two-dimensional domains, such as the WDF and CAF, as well.
There is no significant simplification for b(t) = a(t), except
for the realness of waa(t,f), as before.

Use of mirror-image definition (69) allows for an interesting
connection between WDFs and CAFs. First, substituting (49) into

(53) and (55), we have cross CAF

20
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xab(v,t) = Idt exp(-i2nvt) a(t+kt) b*(t-kt) =

= Idf exp(--i2nfr) A(f+kv) B*(f-%v) = XAB(v,r) (72)
and cross WDF

wab(t,f) = Jdr exp(~-i2nfr) a(t+kt) b*(t—%t) =

- jdv exp(+i2nvt) A(f+hv) B (f-kv) = Wy (t,f) . (73)

Reference to (69) now immediately reveals that

Wop(t, f) = 2xa§(2f,2t) (74)
or

Xap(¥:T) = J,p (5T 49) = Byp(T,v) - (75)

Here, we also used (61). That is, the WDF of two waveforms
a and b is proportional to the CAF of waveforms a and b, the
mirror-image of b.

Finally, since
B*(f) @ b"(-t) = b'(t) , (76)

then, using (72),

X Lv,T) = de exp(i2nft) A(f+4v) B(f-%v) =
AB

1
= X (v,T) = 3W (kt,%v) = W (t,v) . (77)
ab* 2 ab* ab*

21/22
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TWO-DIMENSIONAL TRANSFORM RELATIONS FOR WAVEFORMS

In an earlier section, general two-dimensional transform
relations were derived between sets of four functions related by
Fourier transforms; see figure 1 and (39) and (43). Here, we
will utilize the particular forms considered in the previous
section for waveforms (see figure 2) and will derive closed forms
for I and J in (39) and (43), respectively.

TWO-DIMENSIONAL CONVOLUTIONS

If we substitute (49) and (50) in the top relation in (39),

there follows

I(v,f,t,Tt) = JJdt'dr' exp(~-i2nvt’-i2nfr’) a(t+ist ' +t+4r’) X
x bY(t+ht’-Yr-%r’) X c*(t—%t'+%r~kr') d(t-%t’'-%r+ht’') . (78)
Now let
u = %t’+4v’, v = t'-3r’'; u+v = t’', 2(u-v) = t’. *79)

Since the Jacobian of this transformation is 4, (78) becomes

X

I(v,f,t,t) = 4Ifdu dv exp[—i2nv(u+v)—i2nf2(u-v)}

X a(t+kt+u) b (t-4t+v) c”(t+ht-u) d(t-4r-v) =

X

= Idu' exp(-i2nu’ (f+4v)) a(t+kt+ku’) c*(t+5r—%u’)

X jdv' exp(+i2nv’ (f-%v)) b*(t—%r+5v') d(t-&t-&v’)
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= W, (LT, £4+4v) W;d(t~8r,f—%v) . (80)

That is, all the following quantities are equal:

I(v,f,t,t) =

dt'dt’ exp(-i2nvt’-iZ2rfr’) R, (t+kt’, t+ht’) R;d(t-at',r-gr')=

o J

]

dv’'dr’ exp(+i2nv’'t-i2nfr’) xab(v+%v',r+%r’) x;d(v—%v’,r—Sr')=

dv'df’ exp(+i2nv’'t+i2nf’'rt) &ab(v+%v',f+%f') ¢;d(v—%v',f-%f')=

At df’ exp(-i2nvt’+i2nf’r) Wop(tst’  f+4E7) W;d(t—kt‘,f-%f')=

= W__(t+hT, f+4v) W;d(t—%t,f—%v) ) (81)

All four double-integrals in (81) can be expressed as a product
of the same two one-dimensional integrals, which are cross WDFs.
This reduction is only possible when the two-dimensional
functions, like wab and Xap+ are WDFs and CAFs, respectively.
The transformations in (81) are compined two-dimensional Fourier
transforms and convolutions of TCFs, CAFs, SCFs, or WDFs.

By use of (74), an alternative expression for the end result

in {81) is
I(v,£,t,7) = 4 X, (2f+v,2t+T) x;d(Zf—v,Zt—r) , (82)

in terms of mirror-image functions; see (69). Also, a more

typical convolution form for (81), for example, is (using (61))
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deu dv exp(~i2mvu+i2nvr) Wab(u,v) w;d(t—u,f—v) =

= exp(-invt+infr) Qac(t+5t,f+3v) Egd(t—ﬁr,f—%v) . (83)

TWO-DIMENSIONAL CORRELATIONS

In an identical fashion to that used above, result (43)

becomes

J(v,f,t,t) =

= ndt'dr' exp(-i2nvt’'-i2nfr’) Rab(t'+%t,r'+%r) R;d(t'-%t,r'—%r}=

ldv'dt’ exp(+i2nv’'t-i2nfr’) xab(v'+5v,t’+%r) x;d(v'-%v,t‘—%r)=

]

avras: exp(+izmyvt+izngrv) &, (v +hv, £ref) 81 (v kv, £ k)=

= [[at'af’ exp(-i2nvt’+iznf'r) W (L7 +ht, 1 +hf) w;d(t’-%t,f’-%£)=
*
= xac(f+8v,t+8t) xbd(f—%v,t-%t) . (84)

All these double integrals in (84) are equal to a product of two
cross CAFs. Again, this only holds for the special forms of the
two~-dimensional functions, like wab and Xab’ which are WDFs and
CATs, respectively. <The transformations in (84) are combined
two~-dimensional Fourier transforms and correlations of TCFs,
CAFs, SCFs, or WDFs.

By use of (75), an alternative expression for the end result

in (84) is
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J(v,f,t,1) = gag(t+5r,f+5v; ggg(t~%r,f-%v) ,

in terms of mirror-image functions. Also, a more typical

correlation form for (84) is, for example,

deu dv exp(-i2nvu+i2nvr) wab(u,v) w;d(u~t,v—f) =

= exp(-invt+infr) xac(f+8v,t+%r) xgd(f—%v,t-%t)

A MIXED RELATION
As an example in this categqgory, if we take (46) with
Wl(t,f) = Wab(t,f) ' Xo(v,T) = xcd(Zv,Zr) ‘
then
#1(v,£) = & (v,f) = A(f+hv) B (f-%v) ,

(v, £f) = % 8 g(2v, ) = % C(%f+v) D" (%f-v)

Substitution of these results in (46) yields

(85)

(86)

(87)

(88)

ffdt'df' exp(-i2nVE +i2REIT) W_, (teht’, f+kf’) xiy(2f-£,2t-t7) =

*
= wac(t+5r,f+&v) xbd(Zf-v,2t~t) .

(89)

This mixed relation is a two-dimensional Fourier transform and

convolution, involving a WDF and a CAF, expressible in closed

form as a product of another WDF and CAF.
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SPECIAL CASES

The two-dimensional transform results in (81) and (84) in the
previous section involve four arguments, namely v,f,t,r, and four
functions, a(t), b(t), c(t), d(t). Their extreme generality
allows for numerous special cases upon selection of the
arguments and/or the functions. We consider some of these
possibilities, but are aware that this list could be considerably

augmented.

Case 1. As an example of the generality of these results,

consider in (84) the particular selection

v=f=t=1=0, c(t)=a(t), d(t) = bt". (90)

There follows immediately the "volume constraint"

fjdv'dr' lxab(v',r')|2 - ffdt'df' Iwab(t',f’),z

= Xaa(0:0) Xpp(0,0) = fat Jace)1? far Ipey® . (o1
Case 2. 1In (84), take v = t = 0, b(t) = a(t), d(t) = c(t;.
Then there follows, upon use of (85},
dev’dr' exp(+i2nv’'t-i2nfr’) xaa(v',r’) x;c(v',r') =
= ffdt'df' W (tr+it, £ akE) W__(t7 -kt £/-4f) =
= |xactt0) |7 = |8t 01| (92
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which is nonnegative real for all f, t, a(t), c{(t). Thus, the
two-dimensional correlation of two auto WDFs is ncnnegative.

An alternative form of (92) is
2
deu dv Waa(u,v) wcc(u—t,v—f) = |xac(f,t)l . (93)
Further specialization to t = £ = 0 yields
deu dv W v) W__(u,v) = (0,0)]% = Ifdt a(t) c*(t)!z (94)
aa(u’ ) cc( V) Xac\" d

which yields Moyal’s result [3] for c(t) = a(t), namely

L

fjdt df Wia(t,f) [Jdt la(t)!2]2 ) (95)

Case 3. In (81), take v =1 =0, b{(t) = a(t), d{(t) = c(t).

We then get the "smoothing result"”

jjdt'df' W (bt E4E ') W__(t-ht’ f-%E7) =

n

|Wac(t,f)|2 = ‘Jdr' exp(-i2nftr') a(t+kr ") c*(t—kr’)‘2 2 0 (96)

for all t, f, a{(t), c(t). An alternative form is

fjdu dv W__(u,v) W__(t-u, f-v) = %wac(%t,gf)lz = Iygac(t,f)l2 =
= ljdt' exp(-i2rnfr’) a(t') c*(t-r')l2 . (97)

That is, the two-dimensional convolution of two auto WDFs 1s

never negative (just as for the correlation in (92)).
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Case 4. Using (62), the same basic end result is obtained

from (81) for the following double integral involving CAFs:
deV'dt' exp(+i2rnv’'t-i2nfr’) xaa(%v',&r') xcc(%v',%r') =
= |w (t,f)|2 . (98)
ac

This right-hand side is nonnegative real for all t, £, a(t),

c(t). An alternative form is, upon use of (61),
jfdv dt exp(+i2nvt-i2nfr) xaa(v,t) xcc(v,r) = Iyac(t,f)lz . (99)

Case 5. Consider (81) with c(t) = a(t), d(tj) = b(t). Then

the right-hand side of (81) is always real. For example, we have

ffdv'dt' exp(+i2nv't-i2nfr’) xab(v+8v',r+%r') x;b(v~%v',r—%t')=
= JJdt'df' exp(-i2mvt +i2nf T) W_, (t+lt’, f+hE7) Woy (t-bt' f-4f')=

= Waa(t+8r,f+kv) Wbb(t—kr,f-kv) . (100)

This is real for all t, t, £, v, a(t), b(t), although it could go

negative.

Case 6. From (81), with v = t = 0, there follows
*
det'df' Wab(t+%t’,f+%f') ch(t—%t',f—kf’) =

*
= wac(trf) wbd(tlf) ¢ (101)
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or, with the help of (61) and (75), alternative form

deu dv Wab(u,v) W;d(t—u,f-v) =

= Waoltr£) Wpg(t f) = X, (£/8) xpq(£,t) (102)

Furthermore, if we set c(t) = a(t), d(t) = b(t), we obtain

deu dv W_, (u,v) W (t-u, f-v) =
= Waa(trE) Bpp(tsE) = Xap(£,8) xpp(fit) (103)

Thus, the two-dimensional convolution of a complex cross WDF with

itself is always real, but could go negative.

Case 7. From (83) and (84), with v = t = 0, there follows

IJdt'df' Wop (L7 4kt £/ 4hE) W (t -kt £rokt) =
= jfdu dv W, (u,v) Woglu-t,v-f) =
= IJdv'dt’ exp(+i2nv’'t-i2nfr’) Xap(V'rT") x;d(v',t') =
= Xac(Ert) Xpg(£rt) = Bp (€, £) Bpg(t,f) . (104)

The two-dimensional correlation of two cross WDFs is a product of

two cross CAFs.
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Case 8. If we now set c(t) = a(t) and d(t) = b(t) in (104),

we obtain

JIdu dv wab(u,v) w;b(u—t,v-f) =
= jjdv'dt' exp(+i2nv’'t-i2nfy’) Xap(V'rT") 2 .
= XaalErt) Xpp(fet) = W (€, £) By (t,£) . (105)

The two-dimensional correlation of a cross WDF with itself is a

product of two auto CAFs.

Case 9. From (84), with t = £ = 0, c(t) = a(t), d(t) = b(t),

and with the help of (63), we find

det'df' exp(-i2nvtr+iznert) W (t,£)[% =

= Xaa (%Y HT) Xpp(vohT) . (106)

This is a generalization of (91).
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APPLICATION TO HERMITE FUNCTIONS

This material is heavily based on [5; appendix A, (A-36) and
the sequel]. Let Ln(t) be the n-th orthonormal Hermite function
with linear frequency-modulation, as given in [5; (A-36)]. Also

let waveforms

a(t) = & (ut), b(t) = &5(yt), c(t) = Lo(pt), d(t) = L (vt). (107)

The particular cross WDFs

Wop(t,£) = [dv exp(-i2nfr) g (ptehpr) Lf(ve-nvr)

wcd(trf) = Idt exp(-i2nfr) Cm(ﬂt"';iﬂr) C;(Yt—BYT) ’ (108)

cannot be expressed in closed form. However, the crass WDFs

Wac(t,f) = Jdt exp{-i2nfrt) Lk(ut+%pt) C;(pt—kur) =

- % Wy (Ut £/p) (109)
and
Wog(EdE) = 3 W (YE,£/Y) (110)

can be simply expressed, in the notation of [5; (A-40) and
{({A-41)). Thus, the very complicated two-dimensional convolution
and Fourier transform in (81), of Yab and ch, can be written in
a closed form involving the product of two generalized Laguerre

functions. Numerous specializations are possible.
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SUMMARY

Some very general two-dimensional Fourier transforms of
convolution and correlation form have been derived for various
combinations of WDFs and CAFs. In particular, closed forms for
the convolution form are given in (81), while results for the
correlation form are given in (84). Numerous special cases may
be obtained from these results, of which a brief list has been
presented in (90) - (106).

Some extensions to more general arqguments have been derived
in appendices A and B. In particular, appendix A treats the case
where a product of CAFs is of interest, while the case of a
product of WDFs is considered in appendix B. The possibility of
a combined convolution and correlation has also been considered
in appendix A.

For signals reflected off moving targets, it is necessary to
define a generalized WDF, allowing for contracted arguments.
This possibility has been considered in appendix C, where a
two-dimensional Fourier transform and convolution has been
evaluated in terms of the generalized WDF.

The results of this report should enable rapid evaluation of
integrals of products of WDFs and/or CAFs with a wide variety of
arguments and including exponential terms with linear arguments.
They also significantly extend a number of special cases already

known in the literature.
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APPENDIX A - PRODUCTS OF CAFs

In this appendix, we will further generalize the results 1in
(81) and (84), for products of two CAFs, to allow for more
general arguments. However, we begin by considering general

two-dimensional functions as in figure 1. In particular, let
g(t) = Xy(va/T) + h(T) = X5(Vp,T) (A-1)
in (4). Then
G(f) = &,(v,, ) , H(f) = 3,(v,f) , (A-2)
giving

Jdt' exp(-i2rmfr’) x,(v,,Btr’'+ar) X;(vb,Yt'+pt) = exp[iznfrg%%gﬂ) x
«forr exolsnerccor-n) wgr(e o) son(e- o8] -

= 1 1 glt.éﬂ ' 1 [
Tov-FoT exp(lant 2By ] Idf exp(i2nf’'t) x

X£’_ _2] *[ _Bf _.f.] -

¢ (v 2 * 78) 20 o - ) (A=3)
Now, let va=ﬁv'+u», vb=vv'+pv, where the boldface constants

are unrelated to their counterparts; that is, B need not equal g,

with the same true of a,p,y. Then Fourier transform (A-3) on v’

to obtain

37




TR 8759

JIdv'dt' exp(+i2nv’t-i2nfr’) xl(ﬁv'+uv,6t'+ur) x;(yv'+pv,yt'+pr)=

= 'r-—-_ray}-ﬁp exp(iznfrwzgY r,] jjdvrdf' exp(+i2n\"t+i2ﬂf't) X

fl

wpn * 7)o i - ) - oo

X ’1{5“'+°“’ ay-Bu ~ 2y

In general, we cannot proceed any further on this double integral
of a product of general two-dimensional functions Xy and x,-.

Now let R1 and R2 be TCFs; that is,

Ry(t,T) = a(t+hT) b*(t-kt) = Pop(tiT)

Ry(t,T) = c(t+kr) d*(t-kt) = Rog(t,T) - (A-5)
Then ®, and Qz become < Fs:

&, (v,£) = &, (v,f) = A(£+}v) B (f-%v) ,

(v, £) = 8 _ (v, f) = C(Ef+hv) DY (f-%v) . (A=6)

As a first case, let y=f and y=8. Then (A-4) becomes

dev'dr'exp(iva't—iant') xab(ﬁv'+av,5t'+at) x;d(ﬁv'+pv,5r'+ur)=

1 , . | |
= TeoiT exp(12uft02§] dev'df' exp(+i2nv t+i2nf't) x

X A(Egé +%§ +55v'+%uv) B*{agé +5§ —gpv'-kav) X
x c*(agi -s% +55v'+%pv) D(aéi -gé -55v'-5pv] =
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-1 io2nfr il aty
| 881 GXP(ﬂanr 76 -i2nvt B] x

X xac(§ +sv(a-p),§ +%t(a~p)] xbd[‘3 -%v(a- u).% -ht(a- u)]. (A-T7)

Thus, this very general two-dimensional correlation and Fourier
transform of cross CAFs can be expressed as a product of two
different cross CAFs. For 8=8=1, a=a=%, p=p=-%, this result
reduces to (84).

As a second case, let y=-8 and y=-f. Then (A-4) becomes
dev'dt'exp(iva't—iant’) xab(uv+ﬁv',ut+5r') x;d(yv—ﬁv',pt—ﬁr')=

1 »
~ TB(a*u)] exP[lznf‘ ] de“ df’ exp(+i2nv’/t+i2nf'r) X

X A[a+p +%— +XBv’ +kav] B (a;p +8E %ﬁv'—%av] x

—f

X C*(a+y 5" -%ﬁv'+5pv] D(EIZ +%§ +%ﬁv'—%ﬂV] =

Iﬁﬁl_l exp[+12nfr—§% —12nvt—§§}

X

X ﬂac[% +5t(a+u),§ +;§V(a+u)] E;d[% “%t(aﬁu),% —5\)(04'}1)], (A-8)

where we used (61). Thus, this very general two-dimensional
convolution and Fourier transform of cross CAFs can be expressed
as a product of two different cross WDFs. For B=f=%, a=a=1,

p=p=1, this result reduces to (81).
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As a third case, let y=B, y=-f. There follows a two-
dimensional relation involving both a convolution and a

correlation:
JJdv'dr'exp(i2uv't—i2nfr') xab(ﬁv'+av,ﬁr'+ar) x;d(~ﬁv'+pv,ﬁr'+pr)

= 155!—1 exp{+12nfr9%% —i2nvt9%g) X

X Ead*('té +%t(ﬂ-#):§ +‘§\>(0+H)) E;c*[% —;ﬂ(a—u),% —%v(a-d-p)], (A-9)

where W(t,f) = %W(%t,%f) again. Observe the conjugates on
subscripts d and ¢ of the scaled WDFs W.

For R=R=k%, a=a=1, p=py=1, this relation becomes

fjdv'dr' exp(i2nv’t-i2nfr’) xab(v+%v',r+%r') x;d(v-%v',r+%r‘) =

. *
= 4 exp(idnfr) Ead*(Zt,2f+v) Ebc*(2t,2f—v) =

*

= exp(idnfr) Wad*(t,f+5v) wbc*

(t, f-%v) . (A-10)
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APPENDIX B - PRODUCTS OF WDFs

In this appendix, we will also generalize the results in (81)
and (84), but now for products of two WDFs, to allow for more
general arguments. Again, we begin by considering general two-

dimensional functions as in figure 1. 1In particular, let

"

(B-1)

g(t) wl(trfa) . h(t) = Wz(tlf

b) 4

in (4). Then

#

G(v) Ql(v,fa) r H{v) = Qz(v,f (B-2)

!
giving

, . ) , * , _ . ax+§“
Jdt exp(-12nvt’) wl(ﬁt +at,fa) wz(yt +pt,fb) = exp[12nvt 7Ry ] X

=

x fdv' exp[iva't(ay—sp)) Ql[yv'+ 5 ,fb}. (B-3)

o™
-
2.}
[+
[—
-]
[
r———
™
<
{
<
<<

Now, let fa=ﬁf'+uf, fb=yf'+pf, where the boldface constants
are unrelated to their counterparts; that is, B need not equal 8,
with the same true of a,uy,y. Then Fourier transform (B-3) on f',

to obtain

det'df' exp(-i2mvt ' +i2f’T) W (BL’+at,BE +af) Wy (vt +ut,yE +uf)=
= exp(iznvtg%%gg] dev'df' exp(+i2nv't(ay—5p)+12nf’r) X

’ __\i ’ * '__.2 ¢ -
x Ql[yv + 7R BE +af] ézlﬁv 3y e +pf) . (B-4)
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In general, we cannot proceed any further on this double integral
of a product of general two-dimensional functions Wy and W,.

Now let R1 and R2 be TCFs; that is,

Ry(t,T) = a(t+yr) b (t-ht) = R (t, 1) ,

Ry(£,T) = c(t+kr) d¥(t-%t) = Rog(teT) - (B-5)
Then *l and §2 become SCFs:

8 (v, f) = &, (v,f) = A(f+hv) B (f-Yv) ,

8,(v,£) = &_4(v,£) = C(f+hy) D*(f-%v) . (B-6)

Substitution in (B-4) yields
det'df'exp(—ivat'+ian'r) wab(Bt'+at,5f'+af) w;d(yt'+ut,yf'+uf)
= exp(ivatg%%gﬂ) dev'df' exp +i2nv’t(ay—5p)+i2nf't} x

x A[Bf'+af+%yv'+kv/5] B*:ﬁf'+af—5yv'-&v/5] x

X C*[yf'+pf+55v'-kv/y] Dlyf'+pf~&ﬁv'+%v/v] . (B-7)

As a first case, let y=f and y=p. Then (B-7) becomes
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jjdt‘df'exp(-i2nvt'+i2nf'r) wab(ﬁt'+at,ﬁf'+af) w;dtﬁt'+pt,5f'+yf)

= exp{ivatE%%) dev’df' exp(+12nv’t6(a—p)+i2nf'r] X

X A(ﬂf'+af+%6v'+kv/ﬁ] B*(Bf'+af-55v’-%v/6] X
*
x C [5f'+yf+56v'—kv/ﬁ] D(ﬁf’+pf—%5v'+%v/ﬁ] =
= IBﬁl'1 exp{+12nvtg%% -i2nfrg§§] x
X Xac[E(@-m+ 53 Jt(a-p)+ 55 xpg(El@-m)- 53 t(a-p)- 5] - (B-8)
Xac KT 28 ¢ 1% 28} Xpd 28 ’ 28)

Thus, the very general two-dimencional correlation and Fourier
transform of cross WDFs can be expressed as a product of two
different cross CAFs. For B=p=1, a=a=%, uy=p=-%, this result
reduces to (84).

As a second case, let y=-f and y=-f. Then (B-7) hecomes
det'df'exp(-iznvt-+iznf'r) W (Qt+Bt’ ,af+Bf’) Wi, (ut-gt’,pf-pf")
= exp[ivatg%%) JJdv'dI' exp(-i2nv’t6(a+p)+i2nf'r) X
X A[ﬁf'+af—%BV'+kv/ﬁ] B*(ﬁf'+uf+%5v'-%v/ﬁ] x

x C*(-pE" +ut+hpy’ +hv/g) (- 4ut-npyh/s) =
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= -1 i2nvt@l _jonfr ok
|88 exp[+12HVt 36 i2nfr 25] x

3 o (8-9)

>l
™Il

using (61). Thus, the very general two-dimensional convolution
and Fourier transform of cross WDFs can be expressed as a product
of two different cross WDFs. For B=f=%, a=a=1, p=p=1, this

result reduces to (81).

Fhrr vt =0, v=20, b(t) = a(t), d(t) = c(t), (B-9) reduces to
det'df' W (at+Bt’ af+Bf") W_ (pt-pt’ puf-pf’) =
= 188177 |Wye(ttatn), £arm]|? (8-10)

which is nonnegative for all parameter values and waveforms a(t}

and c(t). This is a generalization of (96).
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APPENDIX C ~ A GENERALIZED WDF

When a signal is reflected from a moving target, the effect
is to contract (or expand) the time scale of the echo, rather
than cause a frequency shift. This requires us to consider a

more general version of a WDF. To begin, if waveforms
a(t) = a(at) , b(t) =b(at) , o> 0, (C-1)
then their cross WDF is
wgp(t'f) = é Woplat, £/a) . (C-2)
Thus, we have need to consider integrals of the form
Ksjjdt’df' exp(-i2nvt’'+i2nf't) Wab(t',f') W;d(t—at',f—f‘/a).(c-3)
This form is general enough to accommodate integrand

W, (Bt BE") Wzd(t—ut',f—f'/a) (C-4)

by a change of variable.
To accomplish evaluation of (C-3), we must define a

generalized WDF as

Idr exp(-i2nfr) a(t+pr) b*(t—(1~p)r) . (C-5)

W, (t,£ip)
Then we have the usual WDF as a special case, namely

Woplt fik) = W, (t,f) . (C~6)
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Also, (C-5) enables us to evaluate the following more general

integral according to
Idt’ exp(-i2nft’) a(t’) b (t-ot’) =
. 1
= p exp(-izZnftp) W_, (pt,pfip) ;5 p = 135 - (C-7)

Now we are in a position to reconsider integral K defined

above in (C-3):
K = JJdt'df' exp(-i2nvt’+i2nf’'t) Idu exp(-1i2nf'u) a{t'+%u) x
b b*(t'-ﬁu) Jdv exp[i2rn(f-£f'/a)v] c*(t-ct'+%V) d(t-at’-%v). (C-8)

The integral on f’ yields &(t-u~v/a). Integration on u then

yields
K = det'dv exp(-i2nvt’+1i2nfv) a(t’'+4t-%v/a) x

x b*(t’-%t+kv/a) c”(t-at'+kv) d(t-at’'-kv) . (C-9)

Now let

]

X = t'+kt-kv/a , y = t'-%t+v/a ;
t' = %(x+y) , Vo= a(y-x+1) . (C-10)

The Jacobian of this two-dimensional transformation is a, leading

to
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K = qa ffdx dy exp[-inv(x+y)+i2rnfa(y-x+t)] X

X a(x) b*(y) c*(t+3ar—ax) d(t-%ar-ay) =

= a exp(i2rafr) de exp{-i2n(af+kv)x] a(x) c*(t+sur-ux) X

x [dy exp(i2n(af-kv)y) b*(y) d(t-kar-ay) =

.« o afr-vt t+har af+kv, 1 ]
(1+u)2 exp(12n 1+a ] ac( l1+a ' 1+a ’'1+a X
* {t-dar af-&v, 1
X Wpd(TT#a " 17a ‘1+a) ! (C-11)

by use of (C-7). For a = 1, this reduces to alternative form

(83), upon use of (C-6) and (61).
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Alias-Free Smoothed Wigner Distribution
Function for Discrete-Time Samples

Albert H. Nuttall

ABSTRACT

An alias-free Wigner distribution function (WDF), for a time
waveform s(t) limited to total frequency extent F, is available
if the time sampling increment A is less than 1/F. Furtb:rmore,
the WDF can be efficiently numerically evaluated via fast Fourier
transform (FFT) procedures if the FFT size N is greater than
2T/46, where T is the effective duration of s(t).

However, in order to suppress the undesired inherent
oscillating interference terms in the WDF, it is necessary to
smooth the WDF, or equivalently, weight the complex ambiguity
function. This smoothing operation cannot be accomplished
without a penalty in terms of sampling increment A and FFT size
N. In particular, if the smearings in the time and frequency
domains of the WDF are 2/B and 2/D, respectively, the new tighter
requirements are

2 -1
A([F+B] ’ N >

A4
BA '

in order to realize an unaliased smoothed WDF and to be able to
track its variations in time and frequency. The impact of these
more stringent bounds, which depends on the particular waveform
s(t) of interest and the degree of smoothing utilized, must be
anticipated and investigated for each case; if either bound is
violated, an aliased smoothed WDF will result.

Approved for public release; distribution is unlimited.
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LIST OF SYMBOLS

t time, (1)
£ frequency, (1)
s(t) waveform of interest, (1)

S(f) spectrum of s(t), (1)

T total time extent of s(t), (2)

F total frequency extent of S(f), (3)
T time delay or separation, (4)

v frequency shift or separation, (5)

R(t,t) temporal correlation function, (4)

$(v,f) spectral correlation function, (5)

W(t,f) Wigner distribution function, (6)

x(v,t) complex ambiguity function, (7)

V(v,t) weighting or kernel, (8)

V(v,f) bispectral function, (9)

v(t,t) Dbitemporal function, (10)

V(t,f) smoothing function, (11)

B 1/B is positive extent of V(t,f) in t, figures 2 and 4
D 1/D is positive extent of V(t,f) in f, figures 2 and 4
X(v,t) modified complex ambiguity function, (16)

#(v,f) modified spectral correlation function, (17)

R(t,r) modified temporal correlation function, (18)

W(t,f) modified Wigner distribution function, (19)

® convolution, under (19)
r tilt parameter, (23) and figure 4
q (1-r%)%, (2a)

iii
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effective area of V(t,f), figure 4
effective area of V(v,t), figqure 4
parameter of Choi-Williams kernel, (25)
time increment in sampling s(t), (31)
spectrum calculated from samples {s(ka)},
FFT size, (33)

frequency increment, (33)

approximation, (34), (43), (48)

infinite impulse train of period b, (35)
increment in v, (39)

increment in t, (40)

increment in t, (52)

iv

(31)
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ALIAS-FREE SMOOTHED WIGNER DISTRIBUTION

FUNCTION FOR DISCRETE-TIME SAMPLES
INTRODUCTION

The utility of the Wigner distribution function (WDF) for
detailed time-frequency analysis of waveforms has been summarized
very well in a recent article by Cohen [1]; this material will be
assumed to be known by the reader. As for actual numerical
calculation, the problem of obtaining an alias-free WDF and
complex ambiguity function (CAF), from discrete-time samples, was
solved in a recent report by Nuttall [2]. Specifically, an upper
bound on the time sampling increment and a lower bound on the
fast Fourier transform (FFT) size were determined that allowed
for evaluation of the original continuous WDF and CAF at a
discrete set of points with sufficient detail and coverage to
avoid any significant loss of information. Furthermore, a
detailed prescription for the required data processing of the
available discrete~time samples, in terms of FFTs, was given.

However, the presence of large oscillating interference
terms, which are inherent to the WDF, requires that some smoothed
version of the WDF be made available from discrete data. This
problem was addressed recently by Harms [3], and a procedure was
delineated for its realization in terms of FFTs. However, the
additional data processing required for the smoothed WDF cannot
be realized without some extra effort or penalty; in fact, new

more stringent bounds on the sampling increment and FFT sizes
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must be met in order to retain the alias-free character of the
resultant smoothed WDF. These bounds were derived by Nuttall and
furnished to Harms who listed them in [3; section 4 ’see
reference 11)].

In this current report, we will present the detail~Z2
derivations that lead to these bounds. 1In the process,
interpretations of the smoothed temporal correlation function
(TCF) and smoothed spectral correlation function (SCF) are
required and furnished. Allowance for a very general form of
ambiguity weighting (multiplication) or Wigner smoothing
(convolution), including tilts in the appropriate time-frequency
planes, is made and accounted for. The specific data processing

and FFT operations are presented in complete detail.
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CONTINUOUS TIME-FREQUENCY REPRESENTATIONS

In this section, waveform s(t) is considered to be available
for continuous time t. We will point out some basic properties
of the various time-frequency representations (TFRs) of the
waveform, which will be required later when we address the
discrete-time case; some of this material was given in

(2; especially appendix A].

WAVEFORM CHARACTERISTICS
Complex waveform s(t) has voltage density spectrum
s(f) = [ dt exp(-i2nft) s(t) , (1)

where f is cyclic frequency and integrals without limits are
conducted over the range of nonzer:: integrand. It will be
presumed “hat the waveform is essentially time limited and

frequency limited; that is,

|s(t)] = 0 for |t] > T/2 (2)
and

|s(f)| = 0 for |f| > F/2 . (3)
Thus, the total time extent of s(t) is T seconds while the total
frequency extent of S(f) is F Her:z. The effective extent of

s(t), say where |s(t)]| is within 1/e of its peak, is smaller than

T; similarly, the effective extent of S(f) is smaller than F.
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This distinction between the essential (total) extent and the
effective extent is kept below. The time-bandwidth product TF
must be larger than 1 and can be much larger than 1 for some
waveforms with detailed amplitude- and/or frequency-modulation.
The fact that s(t) is centered at t = 0 results in no loss of

generality because we can delay or advance a given waveform to
this location. Similarly, a centered spectrum S(f) is easily
achieved by frequency shifting. We allow for complex s(t),

thereby accommodating analytic or complex envelope waveforms.

TIME~-FREQUENCY REPRESENTATIONS
The temporal correlation function (TCF) of s(t) is defined as
R(t,t) = s(t+kt) s (t-%t) . (4)

Reference to (2) immediately reveals that R(t,r) is essentially
confined to |t] < T/2, |t| < T. The quantity t is the time delay
or separation variable.

The spectral correlation function (SCF) is the double Fourier

transform of R(t,t) and is given by

$(v,f) = jj dt dr exp(-i2rut-i2nfr) R(t,t) =
= S(f+kv) ST (f-kv) . (5)

Use of (3) then demonstrates that #(v,f) is essentially limited
to |v] < F, |f] < F/2. The quantity v is the frequency shift or

separation variable.
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The Wigner distribution function (WDF) is then given by

either of the following transforms
wW(t,f) = J dt exp(-i2nfr) R(t,r) = (6a)
= J dv exp(+i2nvt) &(v,£f) . (6b)

From (6a), we can conclude that W(t,f) is confined to |t]| < T/2,
while from (6b), the frequency extent is essentially |f]| < F/2.
Finally, the complex ambiquity function (CAF) is available

from either of the following transforms

X{v,t) J dt exp(-i2nvt) R(t,r) = (7a)

]

| af exp(+iznfr) s(v, 1) . (7b)

Therefore, the region of essential contribution of x(v,t) is
[vl < F, |t] < T, from (7b) and (7a), respectively.

The extents of all four of these two-dimensional time-
frequency representations are summarized in figure 1. In fact,
for Gaussian waveform s(t) = a exp(—¥t2/02), the choices T = 4¢
and F = 2/(no), for example, give these exact results in figure
1, at the exp(-4) = .018 level. Horizontal movement in this
figure is accomplished by means of a Fourier transform between
variables t and v; vertical movement utilizes a Fourier transform
relationship between v and f. Relations (6) and (7), along with
their inverse Fourier transforms, constitute the totality of

these one-dimensional transforms.
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T T
TCF T CAF T
R(t,1) X{Vv,T)
-T -T
f £
WDF SCF
W(t,f) (v, f)
F/2 F/2
t /
—T/2 /2 -FK F
-F/2 -F/2

Figure 1. Extents of the Time-Frequency Representations
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GENERALIZED TIME-FREQUENCY REPRESENTATIONS

Since there are four two-dimensional domains of interest in
the TFRs depicted in figure 1, it is necessary to consider the

effects of weighting and smoothing in all of them.

TWO-DIMENSIONAL SMOOTHING OPERATIONS

Consider v,t weighting (or kernel) V¥(v,t) applied

multiplicatively to CAF x(v,t) to yield modified (weighted) CAF

X{(v,T) = x(v,T) V(v, 1) . (8)

The three equivalent descriptors to weighting V¥(v,t), in the

remaining domains, are given by Fourier transform relations

ﬁ(v,f) = : dr exp{-i2nfr) V(v,1) , (9)
v(t,t) = : dv exp(+i2nvt) V(v,t) , (10)
v(t,£f) = J dt exp(-i2nfr) v(t,r) =

= : dv exp(+i2nvt) V(v,£f) =

= IJ dv dr exp(+i2nvt-i2nfr) V(v,Tt) . (11)

The last function, V(t,f) in (11), will be called the smoothing
function, for reasons to be seen below. The notational
convention adopted here is that a Fourier transform from t to v
is indicated by a tilda, while a Fourier transform from t to f is

indicated by a capital.
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GAUSSIAN EXAMPLE

Probably the simplest example of a unimodal two-dimensional
smoothing operation in all four domains is furnished by the

following Gaussian example, where B and D are arbitrary:

V(v,t) = exp(-nvz/Bz—nrz/Dz) p (12)
V(v,f) =D exp(—nvz/Bz—nszz) . (13)
v(t,t) = B exp(—nthz—nrz/Dz) ' (14)
V(t,f) = BD exp(-nB2tZ-nD%f?) . (15)

The effective areas of these four two-dimensional functions, at
the 1/e contour level relative to each peak, are BD, B/D, D/B,
and 1/(BD), respectively. It is seen from (12) that B and D are
the essential (positive) extents of weighting ¥(v,t) in the v and
T directions, respectively. That is, ¥(B,0) = ¥(0,D) = exp(-n)
= ,043 << 1 = ¥(0,0). Similarly, from (15), 1/B and 1/D are the
essential (positive) extents of smoothing function V(t,f) in the
t and f dimensions, respectively. These properties are
illustrated in figure 2, where each contour depicted is at level
exp(-n) = .043, relative to its peak. Shortly, we will
generalize this smoothing function example to allow for tilts in
the v,t and t,f planes, thereby enabling better smoothing
capability to be applied to the WDF, without loss of significant

information.
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Weighting

V(v,t)

D exp(-n)
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V(t,f)
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f
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Figure 2. Two-Dimensional Smoothing Functions
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MODIFIED TIME-FREQUENCY REPRESENTATIONS

The effects of each of the general smoothing functions in
(8) - (11) on the four two-dimensional TFRs (4) - (7) of the
previous section are now investigated; see also [4; appendix F].
The resultant generalized time-frequency representations (GTFRs)

are indicated on the left-hand sides by bold type:

X(v,T) = x(v,T) V(v,1) , (16)

f ~

&(v,£f) = J dt exp(-i2nfr) x(v,t) = &(v,f) ® V(v, £f) , (17)
t

R(t,t) = J dv exp(+i2nvt) x(v,r) = R(t,r) & v(t,t) , {(18)
tf

W(t,£) = I dr exp(-i2nfr) R(t,t) = W(t,f) ® V(t,£f) . (19)

X

Here, ® denotes convolution on x, with all other variables held
fixed; thus, for example, (17) is I df’ ¥(v,f-£f’) V(v,f’).

The interpretations of (16) - (19) are as follows: the CAF is
simply multiplied by weighting ¥#(v,t); the SCF is smeared in
frequency f according to V(v,f); the TCF is smeared in time t
according to v(t,tr); and the WDF is smeared in both t and f
according to smoothing function V(t,f). It is this latter
two-dimensional smoothing (convolution) operation in t,f space
that suppresses or eliminates the undesired oscillating
components that are present in the original WDF, at the expense,
of course, of spreading out localized energy components of the

waveform.

10

T
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The extents of the GTFRs are sketched in figure 3; these
results are based upon (16) - (19), in combination with figures 1
and 2. Because X(v,t) is the result of multiplication (16), its
extents in v,t are the minima of the two contributing functions.
On the other hand, the f extent of #(v,f) is increased by 1/D,
which is the positive extent of V(v,f) in f. Similarly, the t
extent of R(t,t) is lengthened by 1/B, owing to the smoothing
action of v(t,r). 1In both of these latter cases, the length of
the untransformed variable (v for #(v,f) and v for R(t,t)) is
unchanged. Finally, W(t,f) is lengthened by 1/B and 1/D in the
t and f dimensions, respectively, owing to the double convolution
with smoothing function V(t,f).

Since the smoothing function V(t,f) in figure 2 has
essentially reached zero by the time |t] = 1/B and |f| = 1/D, the
effective extents in t and f are approximately |t| < 1/(2B) and
|£|] < 1/(2D). That is, V(t,f) is approximately 1/B by 1/D wide
in the t,f plane, for an effective area of 1/(BD); see the line
under (15). If this area 1/(BD) is .5 or greater, then we can
expect that smocthed WDF W(t,f) will be everywhere positive
{4; (F-7) - (F-19)].

On the other hand, if effective area 1/(BD) is significantly
less than .5, then smoothing function V(t,f) is rather impulsive-
like and little averaging will occur as a result of double
ccnvolution (19). Thus, it appears that BD, at least for the
simple Gaussian example in (12) - (15) and figure 2, should be
chosen of the order of 3 to 4. Then, the effective area of

weighting ¥(v,t) in (12) and figure 2 is BD, which is of the

11
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T T

min{T,D} min{T,D}

AW

I
dh

.1 min(F,B
REe) /
X{v,t) =
R(t,T) & v(t,T) X(v, 1) ¥(v,1)
f f
F _ 1 F 1
2%p 2%D
t / v
T,1 min|{F,B}
2 + B \\\\\\\\h—-—*‘#//////
W(t,f) = #(v,f) =
tf f
W(t,f) & V(t, f) 2(v,f) ® V(v,f)

Figure 3. Generalized Time-Frequency Representations

12




TR 8785

order of 3 to 4. This area is significantly smaller than the
effective extent of CAF x(v,t) in figure 1, which covers an area
of the order of FT, which is generally much larger than 1.
Therefore, we can anticipate significant modifications in the
weighted CAF x(v,t), and, hence, in the smoothed WDF W(t,f), in
the majority of the t,f plane; in fact, W(t,f) will have some
regions with negative lobes if BD ~ 3 to 4. Except to say that
we expect that B < F and D < T, there is little quantitative

connection between these parameters, in general.

TILTED GAUSSIAN EXAMPLE

When waveform s(t) contains some linear frequency modulation,
the simple Gaussian smoothing functions in (12) - (15) and figure
2 are inadequate. The CAF and WDF of s(t) have contours in their
respective planes that are similar to tilted ellipses; see, for
example, [4; pages 35 - 39]. It is then necessary to realize a
weighting function ¥(v,t) and a smoothing function V(t,f), which
also have the capability of moving their contours to
approximately match those of typical CAFs and WDFs.

A very useful set of smoothing functions is furnished
by the tilted Gaussian mountain, with B and D arbitrary

[4; appendices F and D]}:

[ 2 2
¥(v,T) = exp -n[2§ + 15 + 2r % %] ’ (20)
B D J
{ 2 2
V(v,£) = D exp[-—n (1—r ]25 + p’£? - i2r ¥ pe|| (21)
B
\
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2,2 2 r2 T
v(t,t) = B exp|-n|B"t” + [1-r }—5 + i2r Bt 5 p (22)
D
Vit,f) = BD2 exp|- nz{thz + D2f2 + 2r Bt Df) . (23)
l-r l-r
For r = 0, these reduce to (12) - (15). Plots of weighting

function ¥(v,t) and smoothing function V(t,f) are displayed in
figure 4 for r < 0; the contours drawn are at the exp(-n) = .043
level relative to the peak value of each function. Dimensionless
tilt parameter r satisfies |r| < 1; also, we define q = (l—rz)%.
The smoothing function V(t,f) again has essential extent 2/B

by 2/D in the t,f plane; that is, V(t,f) is substantially zero
for |t] > 1/B or |f] > 1/D. However, the effective area A,
(inside the 1/e relative contour level) of V(t,f) is now q/(BD},
which can be considerably less than 1/(BD) for |r| near 1, that
is, when q << 1. Weighting function ¥(v,t) now has essential
extent 2B/q by 2D/q in the v,t plane; its effective area AL is
BD/q, which is the reciprocal of that for smoothing function
V(t,£): Ay = 1/A .

are desired for smoothing purposes; then, A, ~ 3 to 4.

Values of Atf of the order of 1/3 to 1/4

Although effective area A . can be considerably less than

tf
1/(ED), the smearing caused by double convolution (19) still
leads to a smoothed WDF W(t,f) which occupies the same region
indicated in fiqure 3. The extents of the four GTFRs are exactly

the same as fiqure 3, except that the limits on v and t are now
. . . 2.k
min{F,B/q] and min{T,D/q}, respectively; q = (1-r")° . (24)

14
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t/D

A

BD/q

q = (1-r?)” 1/q -
VT 1

V(v,t)

-

v/B
1
-1/q - 1 1/q
exp(-n) -1
level —»
-1/q
Df
q = (1-r%)* 1 -
A_. = q/(BD)
te q V(t,f)
/ )
_1 -q
exp(-n) -q
level
-1

Figure 4. Tilted Smoothing Functions

15
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CHOI-WILLIAMS KERNEL

Another example of the smoothing operations in (8) - (11) is

furnished by [5]:

Viv,T) = exp(—vzrz/cz) ’ c >0, (25)

n%o/lrl exp(~n202t2/t2) for t # 0
vit,T) = ’

d{(t) for v =20

t
]
[«a]

N n%o/|v| exp(—nzczfz/vz) for v # 0
Vv, f) / (27)

5(f) for v =0

i

It

4@
V(t,£f) 2n%c j Q% cos{2nvt) exp(—nzozfz/vz) = (28a)
0+

+0
2n%o I g% cos{2nfr) exp(—nzoztz/rz) , (28b)
0+

fl

provided that t # 0 and f # 0. Integral (28a) is convergent at

v = 0+ only if £ # 0 and is convergent at v = +» only if t # 0.
Similarly, (28b) converges at t = 0+ only if t # 0 and converges
at t = += only if f # 0. Also, (28) yields V(0,f) = =« for all
finite f, and V(t,0) = «» for all finite t. This smoothing
function V(t,f) in (28) has an integrable singularity all along
both coordinate axes since Vv(0,0) = If dtdf v(t,f) = 1 is finite.
Probably, V(t,f) has a logarithmic singqularity as tf » 0. Letting

T = |t]x in (28b), V(t,f) is seen to be a function only of |[tf].

16
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Because of these sinqularities, the actual numerical
calculation of the GTFR W(t,f), by means of double convolution
(19), appears very unattractive; rather, the Fourier transform in
(19) 1is the recommended procedure. The delta functions in the

bottorn lines of (26) and (27) mean that
R(t,0) = R(t,0) and &(0,f) = #(0,f) . (29)

These results follow directly from (18) and (17), respectively.
Therefore, when computing GTFR R(t,t) by means of the Fourier
transform in (18), the slice for t = 0 need not be done at all,

but rather (29) shoula be employed. That 1is,

J dv exp(i2nrvt) x(v,1) exp(—vzrz/cz) for t # 0

R(t,T) (30)

R{t,0) = '.s(t)\2 for t = 0

Finally, GTFR W{(t,f) is obtained by Fourier transform (19).
Numerous other possibilities for kernel V{v,t) are listed in [1].
PRODUCT KERNELS

The weighting in (25) is an example of a product kernel, that

is, the weighting takes the form
V(v,t} = g{vt) , g(0) =1 . (30a)

In order that smoothing function V(t,f) be real for all t,f, it
is necessary that G*(~v,-r) = ¥(v,t) for all v,t, which in turn

recuires that g(x)} be real for all arguments x. Now define

17
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G(y) = J dx exp(-i2nxy) g{(x) . (30b)

Then G(-y) = G (y) for all y.
With the help of these functions and properties, we find that

the rest of the two-dimensional smoothing functions are given by

1 f]
G|= for v # 0
V(v,f) = [v] [“' (30c)

§(f) for v =0

1 *{t
G [= for vt # 0
v(t,r) = {171 (‘] , (30d)

d{t} for v =0

V(t,f) = 2 Re J g% exp(i2ntfy) G[%J . (30e)
0

This last result shows that the smocthing function V(t,f) for a
product kernel is always a functiorn of the product tf, and is
never a function of t or f separately.

The last integral on y converges at y = 0 if G(») = 0.
Alternatively, it converges at y = 0 for G(«~) # 0 if tf # 0. And
the integral converges at y = o if tf # 0.

On the other hand, if tf = 0, then the last integral on y
above is infinite if G(0) # 0; that is, V(t,f) = » for tf = 0,
which corresponds to both coordinate axes t = 0 and £ = 0. The
example in (25) is of this nature and corresponds to the special

b 2.2 2

case of g{x) = exp(-x2/oz) and G(y) = n‘c exp(-n“y“o”), for

which G(0) = n'o # 0.

18
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DISCRETE-TIME CONSIDERATIONS

Up to this point, it has been assumed that s(t) is available
for continuous time t. Now, we address the case where the only
knowledge of s(t) is through samples taken at multiples of time
increment A. The proper treatment of these samples {s(ka)}, in
order to obtain an unaliased WDF W(t,f), was determined in [2]};
namely, it was found necessary to take A < 1/F, where bandwidth F
is specified in (3). Also, when an efficient FFT procedure for
evaluating discrete spectral values of S(f) was employed, it was
found necessary to choose FFT size N > 2T/A, where duration T is
specified in (2). The following extension is aimed at obtaining
an unaliased version of smoothed WDF W(t,f) defined in (19). The

reader must be familiar with the procedures presented in [2].

EVALUATION OF MODIFIED CAF x(v,T)
As in [2; (69)], define

1

A) exp(-i2nfAk) s(ka) for |f] < (28)~
S(f) = k

’ (31)
0 otherwise

where the sum on k is over all nonzero summand values. Then
since A < 1/F, we have S(f) = S(f) for all f; furthermore, S(f)
can be computed at any f values of interest, directly from the
available samples {s(ka)}. Therefore, from (16), (7b), and (5),

the modified continuous CAF is

19
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X{(Vv,T) = V(v,1) I df exp(i2nfr) &(v,f) = (32a)
= ¥(v,T) J df exp(i2nfr) S(f+kv) §*(f-%v) . (32b)

Now, in practice, S(f) must be computed at a discrete set of
points; in particular, when we choose frequency increment

Af = 1/(NA), where N is arbitrary, we obtain from (31)

ool 2

E[E%] = AE% exp(-i2nnk/N) s(ka) for |n| < 3 . (33)

There is no need to consider n beyond the *N/2 range, because the
argument f of S(f) then covers the *1/(24) frequency range, which
is greater than the *F/2 range of S(f) in (3). We adopt, as our

approximation to desired function (32), the trapezoidal form

Xa(V,T) = F(v,1) ﬁ% 2; exp[iZnﬁ%r) g[ﬁ% + %] §*[ﬁ% - %)

for all v,r . (34)

Now let infinite impulse train
& (x) = Y. 8(x - kb) . (35)
k
Then, using b = 1/(Na), (34) can be expressed and developed as

xa(v,r) = V(v,T1) I df exp(i2nfr) &(v,f) Af BAf(f) =

T
Vv, 1) [x(v,r) ® ¥ &(t - jNa)] =
3

V(v,t) ) x(v,t - jNA)  for all v,T . (36)
b

20
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The sum on j in (36) represents sets of aliasing lobes spaced by
multiples of NA on the v axis. From figure 1, since the t extent
of x(v,t) is *T, the first aliasing lobe in (36) for j = 1
extends down to t = NA - T. In order that this lobe not overlap
the desired main lobe, j = 0, we must have T < NA - T, or

p Ay, = 57 <

£ = WA (37)

~1
2t °
This last constraint on O¢ is consistent with the fact that
the t extents of R(t,tr) and x(v,t) are *T; see fiqure 1 and
[2; page A-4].

Equation (37) states that the size of the FFT in (33) must be
at least equal to twice the number of waveform samples taken at
increment A in duration T of s(t). When this selection is made,

(36) and (16) yield
Xa(v,T) = ¥(v,T) x(v,7T) = x(v,v) for ft| < NA/2 , all v . (38)

That is, approximate GTFR Xa(VeT), defined by the sum in (34), is
equal to the desired GTFR x(v,Tr) within a strip in the v,t plane.
Now, in order to convert (34) to a form where we can use the

spectrum calculations (33), we limit v to the values 2n/(NA):

2n ~{2n 1 . i =(j+n) =*{j-n
x(ﬁz,t] = v ﬁE’t] T }; exp[12n§%r S[lﬁz] S (lﬁﬁ}

for |t| <22, alln . (39)

We have dropped the subscript a on x(v,t), by virtue of (38).

The v increment in (39) is B, = 2/(NAa), which is less than 1/7T

21
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according to (37); this increment is fine enocugh to track
variations of x(v,t) in v, since the t extent of the TFRs in
figure 2 is *T/2.

Finally, in order to manipulate (39) into an FFT form, we

restrict the t-value calculations to the set

X[NA'mA] [NA’mAJ NA 2: exp(i2njm/N) S[lﬁz] §*[iﬁ%

N
<3

for |m| , all n . (40)

Actually, since the |v| extent of x(v,t) is min{F,B/q]} according
to (24), we only need to consider

min{F4a,BA/q} . (40a)

Z%%l < min{F,B/q} , that is, |n}| <« g

But, since we always have FA < 1, then |n| < N/2 will always
suffice. Thus, m and n in (40) can be limited to %*N/2. Also,
when |j*n| in (40) exceeds N/2, use S = 0 in (40), according to
(31) and (33).

So far, we have shown that if A < 1/F and N > 2T/4, then an
unaliased version of GTFR x(v,t) is available and that this
version can be efficiently computed by (40). These conditions
are the same as those derived in [2; appendix D}. The multipli-
cation of x(v,t) by weighting ¥(v,t) in (16) or (32) to obtain
X(v,t) has no effect on aliasing in the v,T plane; this is an
obvious result in retrospect. However, since GTFR x(v,t) in (38)
is the product of x(v,r) and ¥(v,r), it varies faster with v and

v and must be sampled more finely. This effect is now addressed.
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The v increment in (40) is At = A. But since the f extent,
Eg, of GTFR #(v,f) in (32a), according to figure 3, is iEf, where

E; = F/2 + 1/D, we must take o, < 1/(2Ef), that is,

a ¢ —L [< %] . (41)

Also, the v increment in (40) is s, = 2/(Na). But since the
t extent, Et’ of GTFR R(t,t), according to figure 3, is tEt,
where E, = T/2 + 1/B, we must take a, < 1/(2Et), that is,

+ 5% [> "K) i (42)

These two more-stringent conditions in (41) and (42) are
consistent with the observation, above, that x(v,t) in (38) is
the product cf two functions. From this point on, we presume

that (41) ana (42) are satisfied.
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EVALUATION OF MODIFIED SCF #(v,f)

The modified SCF #(v,f) is given by (17) as the Fourier
transform of x(v,t). Since x(v,t) will only be available at
increment At = 4, as given by (40), we adopt as our approximation

the trapezoidal form

# (v, f) =0 %% exp(-i2nfma) x(v,ma) =

= J dv exp(-i2nfrtr) x(v,t) Ao 6A(r) =

f
= @(v,f) ® 61/A(f) = 2: Q[v,f - g) for all v,f . (43)
m

a
The first aliasing lobe for m = 1 is centered at f = 1/4.

The f extent of GTFR #(v,f) is *(F/2 + 1/D), as seen in
figure 3. 1In order that aliasing be insignificant in (43), we
must have F/2 + 1/D < 1/(24); that is, time sampling increment A
must satisfy constraint (41), as before. This is tighter than
the original constraint A < 1/F, which was sufficient for
reconstruction of s(t) and the unmodified TFRs such as x(v,t) and
W(t,f). If we anticipate doing some smoothing of the TFRs,
sampling with a time increment A satisfying (41) must be
undertaken in order to avoid aliasing of &(v,f) in f. 1In this

case, we have

#_(v,f) = #(v,f) for J£] < 1/(28) , all v . (44)
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As for the actual evaluation of GTFR #(v,tr), we use (43) and

(44) to get

i(v,ﬁ%] =4 ) exp(-i2njm/N) x(v,ma) for |j| < g , all v . (45)
m

Finally, in order to use the available quantities in (40), we

restrict the calculation to the values

2 } cmo 2
‘(ﬁ%’ﬁ%) = A E% exp(-i2njm/N) x(ﬁ%,mA]
N . N
for |n| < 3 l]l < 5 - (46)

This procedure in (46) yields unaliased samples of the GTFR
#(v,t) when (41) is satisfied. It utilizes FFT operations,
applied to the GTFR x(v,t), which is available by the FFT
prescription in (40). The ranges of integers n and j in (46)
are sufficient to cover the ranges *1/4 and *1/(24) in v and f,
respectively. But since 1/A > F + 2/D by (41), the ranges
*(F + 2/D) and *(F/2 + 1/D) in v and f, respectively, are
adequate to fully cover the extent of GTFR #(v,f); see fiqure 3.
The frequency increment be = 1/(NA) in (46) is fine enough to
track variations of &(v,f) in f, since 1/(NA) < 1/(2T) according
to (42), while the t extent of the GTFRs in fiqure 3 is always
less than #*T.
Also, the increment a, = 2/(NA) in (46) is fine enough to
track variations of #(v,f) in v, since 2/(NA) < 1/(T + 2/B)
according to (42), while the t extent of the GTFRs in figure 3 is

always less than *(T/2 + 1/B).
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EVALUATION OF MODIFIED WDF W(t,f)

The modified WDF W(t,f) was given by (19) as the Fourier
transform of R(t,r). However, in analogy to the two alternatives

in (6), there is also the form
W(t,f) = I dv exp(i2nvt) #(v,f) . (47)

Since #(v,f) will only be available at increment Av = 2/(Na), as

given by (46), we utilize the following trapezoidal approximation

to (47):
W.(t,f) = 55 }; exp[12nNAt] ![Nﬂ,f)
= J dv exp(i2nvt) &(v,f) Av 6A (v) =
v

t
= W(t,f) ® 8y, ,(t) = ) w[t - ng-g—,f] for all t,f . (48)
n

The first aliasing lobe for n = 1 is centered at t = Na/2.
The t extent of GTFR W(t,f) is *(T7/2 + 1/B), as seen in
figure 3. 1In order that aliasing in t be insignificant in (48),

we must have
% + LN (49)

that is, the FFT size N must satisfy (42), as before. This is
more stringent than original constraint (37), which sufficed for

the unmodified TFRs. Again, an unaliased smoothed WDF can only
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be achieved if sampling increment A is smaller and if the FFT
size N is larger, the exact amounts depending on the degree of
smoothing desired; see figure 2 in this regard. When (42) is

satisfied, we have from (48)
W (t,f) = W(t, f) for |t] < NA/4 , all £ . (50)

The combination of (50), (48), and (46) now yields smoothed
WDF samples
w[t —i] — ). ex [12n t) [Zn 1
"'NA Ra 4 ©XP NA‘ N
for |t} <22, |3} <35 . (51)

Finally, to convert (51) to an FFT, we restrict the t values to

w(mé,ﬁ%) = —% 2: exp(i2rnm/N) ’[;2 ﬁ%]

N . N
for |m] < 7 [31 < 5 - (52)

Again, N-point FFTs will realize the desired unaliased smoothed
WDF W(t,f), provided that (41) and (42) are satisfied. The
ranges of integers m and j in (52) cover interval *NA/4 in t and
bandwidth #1/(24) in f. But since NA/4 > T/2 + 1/B and

1/(24) > F/2 + 1/D according to (42) and (41), respectively,
these t and f ranges cover the full extent of smoothed WDF W(t,f)
in fiqure 3.

The time increment A_ = A/2 in (52) 1is fine enough to track

t
W(t,f) in t, since A/2 < 1/(2F) according to (41}, while the v
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extent of the GTFRs in figqure 3 is always less than zF. Also,
the frequency increment b = 1/(NA) in (52) is fine enough to
track W(t,f) in f, since 1/(NA) < 1/(2T) according to (42), while
the t extent of the GTFRs in figure 3 is always less than #T.
Also, see [2; appendix A}.

If #(2n/(Na),f) in the top line of (48) were available for
all f, the approximation wa(t,f) would be aliased only in t, with
period NA/2. However, the SCF available is Qa(v,f), given by the
top line of (43), and it is seen to be aliased in f, with period
1/A. The combination of these properties results in approximate
WDF Wa(t,f) being aliased in both t and f, with periods NA&/2 and
1/A, respectively. The limitations on m and j in final result
(52) keep t and f within the fundamental aliasing interval.
However, (52) contains all the infinite number of overlapping
aliasing lobes centered at t = nNA/2 and £ = k/4 for n,k # 0,0.
It is only the satisfaction of (41) and (42; that keeps all these
overlapping contributions small in the fundamental interval

centered at 0,0.
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SUMMARY

Calculation of the modified time-frequency representations,
x{(v,t), #(v,f), and W(t,f), at selected discrete points in the
various two-dimensional planes, can be accomplished without
aliasing and without losing any information, provided that the
time sampling increment A satisfies A < 1/(F + 2/D) and that the
FFT size N satisfies N > 2T/A + 4/(BA). Also, it is shown in
appendix A that calculation of an unaliased modified TCF R(t,t)
requires that these same constraints be satisfied.

If integrals of products of WDFs or CAFs are of interest [6],
the rules on sampling rate and FFT size given here should suffice
to get accurate numerical results. The aliasing lobes have been
kept out of the regions of interest, thereby minimizing possible
interference effects, and the information in the functions has
been retained.

A summary of the operations that must be undertaken on
available time data samples {s(ka)} follows: compute the
spectral quantities S in (33); use these in (40) to get samples
of the weighted CAF x; employ (46) to evaluate the modified SCF
#; and use (52) to determine the smoothed WDF W. All of these
expressions use N-point FFTs.

Since the number of substantial samples of s(t) is T/A
according to (2), the FFT size N in (33) is at least twice this
large; see (37) and (42). Thus, approximately half of the N
array locations input to {33) will contain rather small

contributions. TIf s(t) is sampled well beyond t = *T/2, say for
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|t} > T, these very small values can be "collapsed" into the
available N bins with no loss of accuracy; see [2; page 5]. A
program that incorporates all these features above 1s contained
in appendix B. The detailed locations of the aliasing lobes of
this procedure are investigated in appendix C.

Candidates for weighting V(v,T) to be used in (40) include
(12) or (20) or (25). The selection of values for parameters
B, D, r, and o will have to be made by inspection of CAF x(v,T1),
which is the factor multiplying weighting ¥(v,t) in (40). A
check should then be made of (41) and (42) to ensure that

aliasing is not significant.
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APPENDIX A. EVALUATION OF MODIFIED TCF R(t,Tt)

The modified TCF R(t,r) is given by (18) as the Fourier
transform on v of x(v,t). Since x(v,t) will only be available at
increment 4 = 2/(Nd), as given by (40), we adopt as our

approximation the trapezoidal fora

2 2
R (t,T) = NA 2: exp[12n nt} X(ﬁ%:f] = (A-1)

= J dv exp(i2nvt) x(v.T) b, BA (v) =
v

t
= R(t,T) 8 &g, ,(t) = 2: R[t - n 2,r] for all t,t . (A-2)

The first aliasing lobe for n = 1 is centered at t = NA/2.

The t extent of GTFR R(t,t) is *(T/2 + 1/B), as seen in
figure 3. 1In crder that aliasing be insignificant in (A-2), we
must have T/2 + 1/B < NA/4; that is, FFT size N must satisfy

constr~int (42), as before. 1In this case, we have from (A-2)

R (t,T) = R(t,T) for |t] <« E% , all t . (A-3)
In particular, from (A-1) and (A-3), we get
k4 2 N
R[—f'tJ = }: exp(i2nkn/N) x( X,T) for |k| < 3 all «
(A-4)

Finally, in order to use the available quantities in (40), we

restrict the calculations to values
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R(ﬁg,mb] = ﬁ% 2; exp(i2nkn/N) x{%%,mn) for |k| < g ,  Im] <
This procedure in (A-5) yields unaliased samples of the GTFR
R(t,t) when (42) is satisfied. It utilizes FFT operations,
applied to the GTFR x(v,t) which is available by the FFT
prescription in (40). The ranges of integers k and m in (A-5)
are sufficient to cover the ranges *NA/4 and *NA/2 in t and T,
respectively. But since NA/2 > T + 2/B by (42), the ranges
*(T/2 + 1/B) and *(T + 2/B) in t and t, respectively, are
adequate to fully cover the extent of GTFR R{(t,t); see figure 3.
The time increment At = A/2 in (A-5) 1is fine enough to track
R(t,T) in t, since A/2 < 1/(2F) by (41), while the v extent of
the GTFRs in figure 3 is always less than *F. Similarly,
increment 6, =4 in (A-5) is fine enough to track R(t,t) in T,
since A < 1/(F + 2/D) by (41), while the f extent of the GTFRs in

figure 3 is always less than *(F/2 + 1/D).
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APPENDIX B. PROGRAM FOR SMOOTHED WDF W(t,f)

In this appendix, a program for the procedure given in (33),
(40), (46), and (52) is presented in BASIC for the Hewlett
Packard 9000 computer. However, in order to minimize
computational effort and storage, some additional shortcuts have
been employed that take advantage of the symmetry properties of
the various two-dimensional functions encountered here.

We begin by observing from (5) that the SCF satisfies

g(-v,f) = & (v,f) . (B-1)

Therefore, we can confine the calculation of &(v,f) to v 2 0,
all £. Then, from (7b), the CAF satisfies a conjugate symmetry

through the origin:
*
X(=v,-t) = x (v,1) , (B-2)

which means that x(v,T) need be computed only for v 2> 0, all rt.
We now choose weighting V(v,t) in (8) to possess this same

origin symmetry property as in {B-2), namely
~ ~¥
V(-v,-T) =V (v,t) ; (B-3)
then it follows that the modified CAF in (8) also satisfies
*
X(=v,-t) = x (v,1) . (B-4)

Again, this allows us to confine the calculation of x(v,t) to
v 2 0, all 1.

The modified SCF #(v,f) is given by Fourier transform (17).
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Use of (B-4) reveals that #(v,f) satisfies

$(-v,f) = 2" (v,f) , (B-5)

which allows us to compute #(v,f) only for v 2 0, all £. Then

the smoothed WDF, given by (47), can be manipulated as follows:

+co +x
Wit,f) = J dv exp(i2nvt) #(v,f) = 2 Re j dv exp(i2nvt) #(v,f) =
-0 0
+
. %*
= 2 Re j dv exp(-i2nvt) @ (v,f) . (B-6)
0

This calculation of smoothed WDF W(t,f) via a forward FFT must be
done for all t,f, but it utilizes #(v,f) only for v 2 O.
If needed, calculation of modified TCF R(t,t) can be obtained

from (18) according to

+o
R(t,t) = J dv exp(i2nvt) x(v,t) =

-0

40 4
= I dv exp(i2nvt) x(v,T) + j dv exp(-i2nvt) x*(v,—t) . (B-7)
0 0

This calculation need only be done for v 2 0, all t, since the

modified TCF satisfies
R(t,-T) = R'(t,T1) , (B-8)

which follows from (B-7) and (B-4).
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In the program listed below, the user must input time samp-
ling increment 4 and FFT size N in lines 20 and 30. The comple;
data samples {s(kA)} are entered via SUB Data in lines 1210 -
1360, which requires time limits K1 A and K2 4 that guarantee
small values of s(t) outside this time interval. The particular
waveform s(t) of interest is entered in SUB S in lines 1380 -
1470 and would have to be replaced by the user for his particular
application. The complex waveform s{t) should be centered at
t =0 and £ = 0; but even if this is not done, an aliased version
of W(t,f) always appears in the fundamental t,f interval centered
at the origin, as discussed in the sequel to (52) and appendix C.
The particular example given here has been shifted by ty and fo’
for purposes of obtaining a less symmetric example to test the
routines for accuracy. Also, linear frequency modulation has
been included in this example in terms of parameter Alo, a_; see

o
[4; (84), (91), (93)), where we have also taken a, = 1, o, = 1.

o

Tilted Gaussian weighting ¥(v,t) in (20) and figure 4 has
been incorporated in function routine DEF FNVt in lines
1490 - 1570; the user must input choices for D, B, r in lines
1500 - 1520. The result of smoothing operation (19), namely the
double convolution of WDF W(t,f) with smoothing function V(t,f)
in (23), can be computed in closed form for the waveform s(t) in
SUB S and the weighting V(v,t) in DEF FNVt. This result is
programmed in DEF FNWdfsmooth and is based upon [4; page J-1].

Subroutine SUB Fftl4 in lines 1930 - 2860 can compute an

N~point FFT for values of N up to 16384. However, due to storage

demands in the main program, in particular line 120 for the two-

35




TR 8785

dimensional arrays Re and Im, the maximum value of N that can be

accommodated in our particular computer configuration is N = 128.

However, another facility with larger storage capabilities can

handle N values larger than 128 if lines 110 - 120 are increased.

It should be noted tnat this procedure in SUB Fftl4 uses zero

subscripts, as encountered directly in the definition of the FFT.

An error check has been performed on the entire procedure
programmed here; it is indicated in the main program by the
indented lines. It is included so that a user can check his
program for accuracy. In an actual application to given data,
the indented lines in the main program should be deleted along
with SUB S and DEF FNWdfsmooth; also, SUB Data must be modified
or replaced, to suit the user.

The results of this error check are listed below for several
choices of fundamental parameters N and A. It is seen that
extreme accuracy can be achieved for the larger FFT sizes N, 1if

increment A is chosen appropriately.

N a maximum error in smoothed WDF W(t,f)
(t,=-11, £,=.17) (t =0, £,=0)
8 .90 .25 .15
16 .65 .016 .010
32 .45 .14E-3 .77E-4
64 .35 .77E-9 .36E-10
128 .25 .BY9E-15 .89E-15

The best choices for A in the latter case, where t, = 0 and
fo = 0, are 1, .72, .51, .36, .25, respectively; the
corresponding maximum errors are .078, .32E-2, .41E-5, .B6E-11,

.89E-15, with execution times .12, .45, 1.9, 7.8, 33.3 seconds.
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TRk 87€S5, APPENDIX B, ALIAS-FREE SMOOTHED WDF; HALF =TORAGE
Ielta=.35 I TIME SAMPLING INCREMEMT; «21>
H=64 ! FFT SIZ2E <= 128

FRINT “Delta =";Delta;" N ="3HN

H1=H-~1

H2=K-2

H3=H2~1

DOURLE M, H1,H2,H3 MHs,Js,Ks,Ms,In,Im ! INTEGERS, HOQT DOUEBLE FREC.

REDIM Coz(8:H-4>,Sr(B:N1>,5i(B:H1),Sbr(~H2:N2>,Sbi(-HZ:N2>
PEDIM X<@:H1)>,Y(@sH1>,Re(@:1H3,0:H1), Im(@:H3,0:H1)>

DIM Cos(325,8r(128>,5i(128),5br(128),5bi (128>

DIM $(128),Y(128),Re(63,127),In(63,127) ! 64 X 128

A=2,%#F 1N

FOR Ne=0 TO H-4
CosiNs)>=COS5(A*#Ns> !
HEXT Ne

CALL Datac¢H,Delta,Sr(*)>,Si(x))
CALL Fft14(H,Cos(*)>,8r(%),5i (%)
FOR Hs=~H2 TO H2

ks=Hs MODULO N !

Sbr(He)=5r(Ks) !
ShicHz>»=Si(Ks? !
HEXT Hs

Iinu=2. - (N*Deltad 1
Dtau=Delita !
FOR Hs=0 TO H3 !
MAT K=(B.,>

MAT ¥Y=<(@.)>

Jn=H2~Ne

FOR Je=~Jn TO0 Jn

FKe=Js+le

Ms=Js~-Ne

Pr=Sbr({Ks>
Pi=Sbi(Ks>
Mr=Sbr(Ms>
Mi=Sbi(Ms?

Jm=Js MODULOD H !
RCImd)=Pr#Mr+Pi M1 t
YCIJwr=—(Pi*Mr-PrxMi) !
NEXT Js

CALL FFt14<(N,Cos(*) ,X(*) Y (%))
Hu=Dnu#*Hs !

FOR Ms=-N2 TO H3

Jw=Ms MODULO N

Tau=Dtau*Ms !
Ve =FHVYt (Hu, Tau) !
FelHs,Im)=XC(Im)*Ve

ImtHg, Jm>=~Y{Im)+Vt !
HEXT M= !
HENT Hs !
FOR He=@ TO H3

FOR #1s=08 TO NI
ACMs>=Re(Hs,Ms)
YCMs)=Im{Hs,Ms>

HEXT Ms

CRLL Fft14cti,Cosd*),X(*), Y(*))
FOR Js=8 TO Mi

Redtiz, 1e)=¥C(Js)
Im(Hs,Js)=Y(Js)

HEXT Js '
MEXT MNs |
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QUARTER-COSINE TAEBLE

! TIME DRTA
> v SFECTRUM

S(fyy; (31>
HEEDS Delta; (33

€40
(40

nu  IHCREMENT IMN CAF;
tau IHCREMEMT IM CAF;
nu >= 0; APPENDIX B

*
S(F+nus2) S (F-nurs2Y; 40D
COMJUGATE THE FFT IHFUT

! INTD nu,tau DOMAIH
nu IN WEIGHTIHG v~ 3 (40

tau IN HEIGHTIHG v~
UEIGHTING u~

COMJUGATE THE FFT QUTFUT
UWEIGHTED COMPLEX AMEIGUITY
HEEDS DeltasHy (40>

FH.

I IHTO nu,f DOMAIH

MODIFIED SFECTRAL CORRELATION FN.
HEEDS Deltas#DeltasH; (46)
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19830
1840
1850
188
1670
19329
1839
11a0
111@
1128
1120
1149
1150
1160
f1ra
11g@
113230
1208
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FOR Js=@ TO Hi

n(B8)=Rec@,ts)

Y(@r=-Im(a, Js>

FOR HMz=1 Tg N3

M{Hz»=Re(Hsz,Js)*2,

YCNsYS~-Im(Ns,Js)*2, ' COHJUGRTE THE FFT IHFUT
HEXT NMs

FOR Hs=HZ2 T0 HIi

HiHz Y=Y (Hs)>=0, I Z2ERO MODIFIED SCF FOR nu < 0
HEXNT Hs

CALL FELldaN,Cos () X(x),¥YC%>) U THTO v,f DOMAIN

FOR Mz=8 TO N3

Re{Mz, Jsd)=H(Ms) ! SHMOOTHED WDF FOR t »= 0
HEXT Ms
FOR Ms=H2 TO NI
ImiMe~N2,Je)=KM) ! SHMOQTHED WDF FOR ¢+ 2 0
HERT M= t  ARRAY ¥<(#)> 15 DIZCARDED; HAFF. E
HEKT JIs I HEEDS 2.#¥Delrar(HxH); (52O
A=2,*Detta’ (H*H)
AT Re=Rex(AD I OHE FIHAL SCALING
MAT Im=Imn*(AD t GIVES SMOOTHED WDF

Big=0,
Dr=Dlielta*.5 It INCREMEHT IMN SMOOTHED WDF3 52D
Df=1.-(H*D=1tad I f INCREMENT IH SMOOQTHED WDF; <52
GINIT

PLOTTER IS "GRAPHICS"
GRAFHICS OH

WINDOM -M2,H2,-N2,H2
LINE TYFE 2

MOVE -H2,0

DRAM H2,0

MOVE @, -H2

DRAK B, N2

PENUP

LIME TYPE 1

FOR Js=-H2 TO H3
Jn=Jz MODULO M

Fe=Df*Js ! f IHM SMOOTHED HIGHER DIST. FH,.
FOR Ms=-H2 TQ -1

Hdfsm=Im(Ms+H2,Tn> !  SHOOGTHED MWDF FOR + < 1

Ts=Dt *¥Ms ! t IN SMOOTHED WIGHER DIST. FH.

Error=tdfsn-FHdfsnooth(Ts,Fs>
Eig=MAX(Big,ABS{(Error))
FLOT Ms,Js+Hdfsm
HEXT Mz
FOR Mz=8 TQ H3
Wdfzm=Fe sz, Jn) ! SMOOTHED WDF FOR t »>= O
Te=Dt*Ms
Error=ldfsm-FHUNAf smooth(Ts,Fg)
Rig=MAX(Big, ABRS(Error))
FLOT Ms, Js+Udfsm
HEXT Hs
FEHUF
HEXT Js
FRIHMT “MAWIMUM ERROR ="3;Big ! MAXIMNULKN ERROR 1H SHMOOTHEDR WDF
PRINT
FAUSE
END
1

is8
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) e 1
13329
240
1258
1266
1270
122a
123a@
1389
1210
1328
{220
1248
1359
1360
13708
1326
13290
1480
1416
1429
1439
1440
1450
14£0
1470
1488
1430
1506
1512
1520
1539
15409
1550
1568
1578
1580

-
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SUE DatacDOUBLE H,REAL Delta,Sr(*),5ic%))

DOUBLE Ks,Js,K1,K2
MAT Sr=C8.>

MAT Si=(0.)

ki=-40

2=408

FOR Ks=K1 T0 K2
Js=FKs MODULO N
Ts=DeltaxKs

CALL S(Ts,5r,S5i>
Sr(Jed=Sr(Je)+5r
Si¢Isd»=8i(Jz)>+%i
IF Ez=K1 THEM PRINT
IF K==k
HEXT Ks

SUEBEHND

'

SUR S1T2,5r,81)

Rlo=,92

To=.11

Fo=.17?

A=T=z~-To
B=2,.%PI*Fo*Ts+.5%A1o*A%*A
E=EXP(~,5*A*A)
Sr=E*COSCR)

Si=E*SIH(B)

SUBEND

1

DEF FHYL (Hu, Tawd

D=3.5%

B=1.1

Re=-,21

V=Nu-B

T=Tau-l

R=VEV4+TET+2, *Re*»V*T
FETURN EXFC(-FP1%R>

FHEHD

1

"HARVEF RN
2 THEH FRIHT S0R(Sr*S%

' IHMTEGERS3, HOT DOUEBLE FRECISION
!  USER MUST

{ IHPUT LINMITS

' COLLAFSIHG

YOTIME ¢

! COMPLEX DATR WARYEFORM

! DRTA IS STOREDR IM @il

1 EDGE VYALLES: "ISRRCSr*Tr+Si 5
~+Si%3i)

39

HAYEFORM z¢t);
LIMEAR FM

CEMTERED AT t=to AHD
f=fo FOR THIS EXAMFLE

CEHTEFR AT

r =0,

COMFLEX
HAVEFORNM

HEIGHTING wveru,t aud
tau EXTEHT, SECOMDS
nu  EXTENT, HERTZ
TILT, |r] <t

(20> AND FIGURE 4

s

f=0




13208
1600
1510
1628
1620
1548
1650
16848
167

1658
1690
1760
1v1e
1728
1738
1746
1750
1768
1770
17848
1799
1800
1g21@
1220
1830
1840
1259
1260
187e
1280
189
1900
1918
1329

DEF FHUHdfzmooth(Ts,Fs)
Alo=,92
Tﬁ—.l!

Fo=.17

D=3.S

- 21
1,-Rs*R3z
=]1.+Al1o*Alo
Hs=2.*32
Rz3=8, *¥P1*F]
Rho=-R1o~-SOR(A2>
Cs=2.%PI1¥B*R-Q2
Ds=2.*PI#D*DrQ2
Lam=Rs
R1=1,-Rho*Rho
Li=1.-Lam#*Lam
Ab=Az#Rs
Cd=Cs*¥Ds
Sa=S0OR(Ab>
Sc=SAR(Cd)
Ai1=ARb*R{
Ci=Cd=L1

n -

B
R
G

l\) w N

TR

N R T

8785

SHMONTHED WDF; TR 8229,

LIMNERAR FM; SEE SUp ¢

CEHTERED AT t=to AHD
f=fo FOP THIS EXANPLE

tau EXTENT, SECONDS

nu  EXTEMT, HERTZ

TILT, |r] < 1

De=A1+Ci{+As*Ds+Bs*Cs~2. ¥Sa*Sc*Rho*Lam

Hi=RA1*Cs+As+*C1
H2=A1*Ds+B=*C1

H3=Rb#Sc*Lam*R1+SaxCd*Rho*l}
Fac=4,#FP]*B#D*SQR(P1-(Q2%Dc>)

{¢=Ts-To
Ys=Fs-Fo

Hum=Ni%#Xs*xs+N2%Ys*Ys+2. *N3%Xs*Ys

RETURH Fac*EXP(-.5%Humn~Dc>

FHEHND
!
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1338 SUR Ffe 14CDOUBLE H,RERAL Cos(*¥),X(%),¥ %2> | H:{i=2~14=1£384: 0O SURS
1340 HIELE Log2n,H1,H2,H3, N4, J,K ! INTEGERS < 231 = 2,147,4233,648
13560 DDUBLE I1,12,12,14, I),IS I? I8,I19,116,111,112,113,114,L¢8:13>
1260 IF H=1 THEN SUBE%IT

137@ IF H.2 THEH 2058

1336 A=X(AX>+¥ 1D

1998 AC1=X(B8r>=-K (1>

g syl %(gr=A

zo1e A=Y (@X+Y(1)

2eza YCId=Y(@r-Y(1)>

2R30 Y(A> =R

2040 SUREXIT

2058 A=LOG(HY /LOGLK2.)

Zpea Log2n=AR

2870 IF AES(A-LogZn><1.E-8 THEM 2180
2620 FRIMNT "M ="3H;"1S HOT A POWER OF 23 DISALLOWED."
2998 FAUSE

2100 Hi=H-4

2119 M2=H1+1

2120 H3=H2+1

<138 H4=H3+H1

2140 FOR It=1 TQ Log2n

215@ 12=2~CLog2n-11)

2160 13=2%12

217e 14=H~-13

2186 FOR 15=1 TO 12

138 16=C15-17>%14+1

z2z09 IF 164{=H2 THEH 2249

z21@ At=-Cos(N4-16-1{)

22219 A2=-Cos(]l6-Nt-1>

2230 GOTO 2260

2249 ARl=Cos(l6~1)

2250 A2=-Cos(H3~-16-1)

2260 FOR 17=9 TO H-13 STEFP I3

2278 I8=I7+15~1

2280 19=18+12

2290 T1=XCI8)

2389 T2=X(19)>

z231e T3=Y(18)>

2329 Ta=Y(19>

=338 R2=T1-T2

2340 A4=T3-T4

2256 XCI8))=Ti+T2

2368 YCI8Y=T3+T4

2378 ACIZ)=A1*A3-AZ+*A4

z3aa YrI9)=A1 *A4+AR2%R3

Z 370 HER®T 17

2480 HEXT 1S

2418 HEAT 11
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2424 I1=Log2n+1

24309 FOR I12=1 TO 14

24409 L{Iz2-1>=1

z2450 IF 12>Logzrn THEN 2470

2460 LCIZ2-13>=2~¢I1~12)>

2476 HEXT 12

2488 K=0

2490 FOR It=f TO LUI3

2508 FOR [2=1I1 7O Ld(12)> STEP L<(I3)
2519 FOR I3=12 TO L<C11> STEP L<12)
2529 FOR I4=13 TO LC1@> STEP LC(11)
2928 FOR IS=I4 TO LC(9> STEP L({8®)
29549 FOR 16=15 TO L(8) STEF L(9)
2558 FOR I7=16 YO L<(7> STEF L<(8)>
2568 FOR I3=17 TO L(6> STEP L(?>
2370 FOR 19=18 TO L(5> STEF L(6>
252@a FOR 118=19 TO L(4> STEP L(D
2597 FOR 111=116 TO L{(3)> STEP L<4>
26 FOR 112=I11 TO L<C(2> STEF L(3
261a FOR 113=112 TO L(1)> STEP L(2)
2E20 FOR 114=113 TO L(B)> STEP L<C1>
638 J=114-1

2e4a IF K>J THEHR 2710

2654 R=RCK)

2660 AKI=X(I)

Z&va X<Jr=R

2630 A=Y (K>

2630 YCKY=Y (D)

2789 Y(J2=R

2718 =Ky

2720 MEXT 114

2738 HEXT 113

2740 HEXT 112

275e HEXT I11}

2768 HEXT 118

2778 HEXT 19

2raea MEXT 18

279e NEXT 17

284an HEXT 16

2818 HEXT IS

2820 HEXT I4

29328 HEXT 13

2840 HEXT 12

2858 HEXT It

28609 SUBEHND

42




TR 8785
APPENDIX C. GENERAL ALIASING PROPERTIES

No finite-duration time function can be exactly bandlimited
in frequency. Therefore, all the properties presented above are
approximations, their quality depending on the detailed temporal
and spectral behaviors on the tails of waveform s(t) and spectrum
S(f), respectively. 1In this appendix, we will derive the exact
aliasing properties of the method listed in appendix B, for
arbitrary values of sampling increment A and FFT size N. In
fact, we will not even refer to a duration T or band F, nor will
we limit time function s(t) and spectrum S(f) to be centered at
t = 0 and £ = 0, respectively. The following results will
explain the aliasing properties of this numerical procedure.

We begin with (1), namely
S(f) = j dt exp(-i2nft) s(t) for all f . (C-1)

This spectrum can have arbitrary extent and lie anywhere on the f

scale. For time sampling of s(t) at increment A, define

S(f) = ) exp(-i2nfAk) s(ka) for all f , (C-2)
kK

where sums without limits are over -«,». This function has

period 1/4 in f and can be written as convolution

S(f) = S(f) ® 8, /5E) = Y. s[f - g] . (C-3)
n

Thus, no matter where S(f) is located, a replica of it appears in

S(f) somewhere in the fundamental *1/(24) frequency range
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centered at £ = 0. Of course, if the fregquency extent of S(f)
exceeds 1/4, there will be overlapping spectral coumponents 1in
§(f) which will cause distortion; these effects are included in
the following analysis.

As in (31), define bandlimited spectrum
S(f) = S(f) rect(af) for all f , (C-4)

where rect(x) = 1 for |x| < 1/2 and zero otherwise. This
function S(f) has limited extent in frequency, namely, it is
nonzero only for [f| < 1/(28). Therefore, using {C-2), we can

limit its calculation to the values

wnl
Nz

[ﬁ§] - g[ﬁg] = A;; exp(-i2nnk/N) s(ka) for |n| < (C-3)

The increment in frequency here is Af = 1/(NA), where N 1is an
arbitrary integer, but generally large.

Guided by continuous forms (7b) and (5) for the CAF, we
define here approximate CAF

X{v,T) = be 2: exp(i2njAft) §[jAf + %} §*[jAf - %] for all v,
J

(C-6)
Since the product of S functions in (C-6) is nonzero only for
lef * vw/2| < 1/(28), the infinite sum in (C-6) can be limited to
3] < N/2. Also, x(v,t) is limited to [v| < 1/4 and has period

l/Af = NA in t. 1In fact, we can develop (C-6) as
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X(v,T) = J df exp(i2nfr) E[f + %] §*(f - %) By Baf(f’ =

T
= X,(v.T) ® 8y, (1) = } X,(v,T - nNB) , (C-7)
n

where x,(v,T) is the CAF of S(f). Thus, again, no matter where
the waveform corresponding to S(f) is located on the time scale,
a replica of its CAF, Xa(v,T), appears in x(v,t) somewhere in the
interval |t| < NA/2 centered at t = 0.

Since x(v,T) is periodic in t, we define the t-limited CAF
i(v,t) = i(v,t) rect(ﬁ%] for all v,t . (C-8)

This function is nonzero only for |v| < 1/4 and for |t| < Na/2.

Accordingly, using (C-6), we only calculate it for sample values

X[ﬁg'mﬂ] = '% 2; exp(i2njm/N) s[ An) 3 [1_§Kg)

Im] < &

for |n| <« N , 5 -

2 (C-9)

Furthermore, as noted under (C-6), the sum on j can be limited to
[3] < N/2, by using the limited extent of S(f) in (C-4). The
increments in (C-9) are s, = 2/(NA) and s, = A.

Now define the weighted approximate CAF
Xp(V,T) = x(v,t) ¥(v,t) for all v,t . (C-10)

This function is nonzero only for |v| < 1/4 and [t| < NA/2, in

which case we limit its calculation to
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Nfz

2n _2 ~ 2
xb{ﬁK’mA] = x{ﬁ%,mﬁ) V[NX,mA) for |nj ,  Im] < g . {C-11)
This result, combined with (C-9), is equivalent to (40) in the
main text. The subscript b explicitly recognizes the approximate

nature of this weighted CAF. In fact, use of (C-7), (C-8), and

(C-10) indicates the precise form of this approximation to be

T

xb(v,r) = xa(v,r) ® 6NA(r)] rect[Nﬁ] v(v,t) for all v,tr. (C-12)
where x_(v,t) is the CAF of S(f). If weighting ¥(v,t) is chosen
to cutoff in t below |[t]| = NA/2, then the rect operation in

(C~12) can be removed. But, in general, this complicated
expression in {C-12) describes the GTFR in the v,t domain.

By combining (18) and (19), the smoothed WDF can be written
as a double Fourier transform of the weighted CAF. We therefore

adopt, as our approximation for the smoothed WDF,

ﬁb(t,f) = Av Ar 3; exp[lzn——t - ianmA] xb(NA,mA) for all t,f
(C-13)

The function Wb(t,f) has period NA/2 in t and period 1/4 in £;

therefore we only need to calculate

ke ) .2 ~ - szomim xy[22,mo)
[ ) = & 2% exp(i2nnk/N - i2nmj/N) X, |§z. ™A

for |k| <

0z
N2

¢ !Jl < (C'14)

The double sum can be terminated at #*N/2, as seen by reference to

(C-10) and (C-11). The result in (C-14) is equivalent to a
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combination of (46) and (52) in the main text.
The doubly periodic nature of ﬁb(t,f) is made apparent by

developing (C-13) as

-~

Wb(t,f) = JJ dv dr exp(i2nvt-i2nfr) xb(v,r) a, 6Av(v) At 6Ar(t) =
tf
= = gl e o

where Wb(t,f) is the WDF corresponding to modified CAF Xp(VeT) in
(C-12). Thus, regardless of where the energy of waveform s(t) is
located in the t,f plane, a replica of the energy distribution
appears in ﬁb(t,f) in the fundamental rectangle *NA/4 by *1/(28)
centered at t,f = 0,0; this behavior has been verified

numerically in the program in appendix B.
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APPENDIX D. ROTATION OF TWO-DIMENSIONAL SMOOTHING FUNCTION

Let arbitrary weighting function ¥(v,t) be expressed in terms

of a normalized function U(x,y) according to

V(v,t) = G(v/B,t/D) , (D-1)

where B and D are some characteristics locations on the v and t
axes, respectively. An example of a tilted Gaussian weighting is
given in (20) and figure 4. The remaining two-dimensiocnal

functions related to i(x,y) are just as in (9)

(11), namely

U(x,g) = | dy exp(-iznBy) G(x,y) , (D-2)
u{a,y) = ; dx exp(+i2nxa) 4(x,y) . (D-3)
U(a,B) = : dy exp(-i2rBy) u(a,y) =

= : dx exp(+i2nxa) 5(x,5) =
= JJ dx dy exp(+i2nxa-i2nfy) U(x,y) . (D-4)

It then follows that the remaining two-dimensional functions

corresponding to weighting V¥(v,t) in (D-1) can be expressed as

V(v,f) = D U(v/B,Df) ,
v(t,t) = B u(Bt,t/D) ,
vV(t,f) = BD U(Bt,Df) . (D-5)
Compare with (20) - (23) for a specific example.
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Now consider rotation of normalized weighting 4 by angle 6
in the v/B,t/D plane. Letting C = cos(®8) and S = sin(®), the

rotated weighting corresponding to V¥ is then defined as

. = alcY + sT ol - s¥) = ¢ B - s2
r(v,r) = u(CB + SD' CD SBJ V[Cv + SDr, Ct SBV} , {D~6)
where we also used (D-1). The corresponding (rotated) two-

dimensional smoothing function will be shown below to be given by

R(t,f) = BD U(CBt - SDf, CDf + SBt) = (D-7)
= V(Ct - ng, Cf + Sgt] , (D-8
where we used (D-5). Thus, the two-dimensional normalized

smoothing function U is rotated by angle -6 in the Bt,Df plane.
This rule holds regardless of the forms of & or U.

The two remaining functions r(t,t) and R(v,f) are not
available in closed form involving any of the normalized

functions, in general; for example,

R(v,f) = I dr exp(-i2nfr) ©(v,1) =
= f dr exp(-i2nfr) ﬁ[c% + S¢, Cf - s%\ . (D-9)

This latter integral requires a slice of ii(x,y) along a line not
parallel to either coordinate axis; such a Fourier transform is
not given simply in terms of U, u, or U. This type of result
might have been anticipated by looking at the examples in (21)

and (22) which contain oscillatory terms.
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To derive (D-7), we employ (D-6) to obtain

R(t,f) = JI dv dr exp(i2nvt-i2nfr) ©(v,Tr) =

= JJ dv dtr exp(i2rvt-i2nfr) G(C% + S%, C% - S%} . (D-10)

Now let x Cv/B + St/D, y = Ct/D - Sv/B; then v/B = Cx - Sy,

t/D = Cy + Sx, for which the Jacobian is BD. Then (D-10) becomes

R(t,f) = BD JJ dx dy exp[i2nBt(Cx-Sy) - i2nDf(Cy+Sx)] U(x,y)

= BD ” dx dy exp[i2n(CBt-SDf)x - i2m(CDE+SBt)y] §(x,y) . (D-11)

Reference to (D-4) immediately yields (D-7). (As a check, 6 =0

yields

R(t,f) = BD U(Bt,Df) = V(t, £f) , (D-12)

where we used (D-5).)
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Complex Envelope Properties, Interpretation,
Filtering, and Evaluation

Albert H. Nuttall

ABSTRACT

The complex envelope of a narrowband waveform y(t) typically
has logarithmic singularities, due to discontinuities in y(t) or
its derivatives, which have little physical significance. The
complex envelope also has a very slow decay in time, due to the
discontinuous spectrum associated with its very definition; this
slow decay can mask weak desired features of the complex
envelope. 1In order to suppress these undesired behaviors of the
mathematically defined complex envelope, a filtered version is
suggested and investigated in terms of its singularity rejection
capability and better decay rate. Finally, numerical computation
of the complex envelone, as well as its filtered version, by
means of a fast Fourier transform (FFT) is investigated and the
effects of aliasing are assessed quantitatively. A program for
the latter task, utilizing an FFT procedure with collapsing, is
furnished in BASIC.

Approved for public release; distribution is unlimited.
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COMPLEX ENVELOPE PROPERTIES, INTERPRETATION,

FILTERING, AND EVALUATION

INTRODUCTION

When a narrowband input excites a passband filter, the output
time waveform y(t) is a narrowband process with low-frequency
amplitude- and/or phase-modulations. The evaluation of this
output process y(t) can entail an extreme amount of calculations
if the detailed behavior of the higher-frequency carrier is
tracked. A much better pracedure in this case is to concentrate
instead on determination of the low-frequency complex envelope of
the narrowband output process y(t) and to state the carrier
frequency associated with it. Then, the detailed nature of the
output can be found at any time points of interest if desired,
although, often, the complex envelope itself is the quantity of
interest.

The complex envelope of output y(t) is determined from its
spectrum (Fourier transform) Y{f) by suppressing the negative
frequencies, down-shifting by the carrier frequency, and Fourier
transforming back into the time domain. For a complicated input
spectrum and/or filter transfer function with slowly decaying
spectral skirts, these -alculations can encounter a large number
of data points and require large-size fast Fourier transforms
(FFTs) for their direct realization. In this case, the use of
collapsing or pre-aliasing {1; pages 4 - 5] can be fruitfully
employed, thereby keeping storage and FFT sizes small, without

any loss of accuracy. This procedure will be employed here.
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As will be seen, when the complex envelope is re-applied to
the one-sided carrier term and the real part taken, the exact
narrowband waveform y(t) is recovered. However, if the complex
envelope itself is the quantity of interest, it has some
undesirable features. The first problem is related to the fact
that if waveform y(t) has any discontinuities in time, its
Hilbert transform contains logarithmic infinities, which show up
in the complex envelope. The second problem is generated by the
operation of truncating the negative frequencies in spectrum
Y(f); this creates a discontinuous spectrum which leads to a very
slow decay in time of the magnitude of the complex envelope.
Since numerical calculation of the complex envelope is
necessarily accomplished by sampling spectrum Y{f) in fregquency ¢
and performing FFTs, this slow time decay leads to significant
aliasing and distortion in the time domain of the computed
quantities.

Because these features in the mathematically defined complex
envelope are very undesirable, there is a need to define and
investigate a modified complex envelope which more nearly
corresponds to physical interpretation and utility. The time
discontinuities in y(t) show up in Y(f) as a 1/f decay for large
frequencies, whereas the truncation of the negative frequencies
of Y(f) shows up as a discontinuity directly in f. Both of these
spectral properties can be controlled by filtering the truncated
spectral quantity, prior to transforming back to‘the time domain.
We will address this filtered complex envelope and its efficient

evaluation in this report.
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When the waveform y(t) is real and/or causal, its spectrum
Y(f) possesses special properties which enable alternative
methods of calculation. Thus, it sometimes suffices to have only
the real (or imaginary) part of Y(f) and to employ a cosine (or
sine) transform, rather than a complex exponential transform.

The aliasing properties of these special transforms, when

implemented by means of FFTs, will also be addressed here.

3/4
Reverse Blank




TR 8827
ANALYTIC WAVEFORM AND COMPLEX ENVELOPE

Waveform y(t) is real with amplitude modulation a(t) and
phase modulation p(t) applied on given carrier frequency fo;

however, y(t) need not be narrowband. That 1is,
y(t) = a(t) cos{2nf0t + p(t)} = Re{z(t) exp(ianot)} R (1)
where complex lowpass waveform
z(t) = a(t) expl[ip(t)] (2)

will be called the imposed modulation. The corresponding

spectrum of imposed modulation z(t) is
2(f) = J dt exp(-i2nft) z(t) . (3)

(Integrals without limits are from -« to +«.) The magnitude

of spectrum Z(f) is depicted in figure 1; it is generally concen-
trated near frequency f = 0. The graininess of the curves here
is due to plotter quantization, not function discontinuities.

From (1), since waveform
y(t) = % z(t) exp(i2nf t) + % 2" (t) exp(-i2nf t) , (4)

its spectrum can be expressed as (see figure 1)

Y(f) = % Z(f-f ) +

N

2 (-£-£) 5 Y(-f) = Y'(f) . (5)

It will be assumed here that y(t) has no dc component; that is,

Y(f) contains no impulse at f = 0.
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ANALYTIC WAVEFORM
The single-sided (positive) frequency spectrum is defined as
Y, (£) = 2 U(f) Y(£) = U(f) Z{E-£ ) + U(E) z*(-f—fo) = (6)
= 2(f-f ) - U(-f) Z(f-£_) + U(f) z*(-f-fo) for all f . (7)

Here, U(x) is the unit step function; that is, U(x) is 1 for
x > 0 and U(x) is 0 for x < 0. The analytic waveform

corresponding to y(t) is then given by Fourier transform
y. (t) = J df exp(i2nft) Y_(f) . (8)

In order to further develop (8), we define a single-sided

(negative) frequency function

0 for £ > 0

N(f) = U(~f) Z(f-f) =
Z(f-f)) for £ < 0

which can be determined directly from the spectrum Z(f) of the
imposed modulation z(t) in (2) if fo is known. The magnitude of
N(f), scaled to peak value 1, is sketched in figure 1; it is
small if fo is large, and is peaked near f = 0. The complex time
function corresponding to (negative frequency) function N(f) is

0
n(t) = f af exp(i2nft) N(f) = [ df exp(i2nft) Z(f-f_) .  (10)

- 0D

With the help of (9) and (10), the single-sided spectrum

Y+(f) in (7) can now be expressed as
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Y (f) = 2(£-£)) - N(E) + N (-f) , (11)

with corresponding analytic waveform (8)

y,(t) = exp(i2nf_t) z(t) - n(t) + n"(t) = (12)

= exp(i2nfot) z(t) - 1 2 Im{n(t)} (13}

*

That is, the analytic waveform is composed of two parts, the
first of which is what we would typically desire, namely the
imposed modulation (2) shifted up in frequency by fo' The second
term in (13), which is totally imaginary, is usually undesired;
it can be seen from (10) and |[N(f)]| in figure 1 to be generally
rather small. There also follows immediately, from (13) and (2),

the expected result

R8!y+(t)} = a(t) COS[anot + p(t)] = y(t) . (14)

Since analytic waveform Y,(t) can also be expressed as

YA(E) = Y(t) + & yg(t) = y(£) + 1 y(t) @ ¢ = y(t) + ifdu YL

(15)
where yg(t) is the Hilbert transform of y(t) and ® denotes
convolution, (13) and (2) yield

yH(t) = a(t) sin[2nfot + p(t)) - 2 Im{n(t)} . (16)

If we define (real) error waveform e(t) as the difference between
the Hilbert transform of (1) and the quadrature version of

original waveform (1), we have
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e{t) = yH(t) - a(t) sin[2nf°t + p(t)] = (17)
= - 2 Im{n(t)} = i [n(t) - n"(t)] = (18)

0
= -2 Im J df exp(inft) z(f-f_) = (19)
-f

O

= - 2 Im {exp(ianot) I df exp(i2nft) Z(f)} ’ (20)

-0

where we used (16) and (10). The error spectrum is, from (18)

and (9),

E(f) = i [N(f) - N'(-£)] = (21)

-i z*(—f—fo) for £ > 0O (22)
i Z(f~fo) for £ < 0

Then, E(-f) = E*(f). The magnitude of E(f) is displayed in
figure 2; it is generallyksmall and centered about f = 0.

The total energy in real error waveform e(t) is

J dt [e(t)12 = j daf |E(f)|2 =
= J df [N(f) - N*(-f)] [N*(f) - N(~f)] =

= [ar [Inee)1? + Ine-6)1%] = 2 [ ag ne))? =

0 -f
- (o]
=2 | af lz(£-£) |2 = 2 f af |z(£)]2% , (23)

-0 -0
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where we used (21), the single-sided behavior of N(f), and (9).
This is just twice the energy in the spectrum Z(f) of imposed
modulation z(t) below freguency -fo; inspection of figure 1

reveals that this quantity will usually be small.

COMPLEX ENVELOPE

The complex envelope y(t) of waveform y(t) is the frequency

down-shifted version of analytic waveform vy (t):
y(t) = y+(t) exp(—i2nfot) = (24)
= z(t) + 1 e(t) exp(«iznfot) ’ (25)

where we used (13) and (18) and chose to downshift by fo Hertz,
the known carrier frequency in (1). Waveforms z(t) and e(t) are
lowpass, as may be verified from their spectra in figures 1 and

2. The spectrum of the complex envelope is, from (25),

Y(f) = 2(f) + i E(f+f ) . (26)

Eqguations (25) and (26) show that the complex envelope and its
spectrum are each composed of a desired component and an error
term.

The magnitudes of the complex envelope spectrum Y(f) and its
error component are displayed in figure 2; Y(£f) is discontinuous
at £ = —fo but has zero slope as f - -fo, whether from above or
below. The left tail of Z(f) and shifted error spectrum,

i E(f+fo), interact so as to yield Y(f) = 0 for f < —fo; this is

most easily seen from a combination of (24) and (6), namely

11
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Y(f) = Y+(f+fo) = 2 U(f+fo) Y(f+fo) = (27)

*
= U(E+£) [Z(f) + 27 (-£-2£)] . (28)

The results for the error spectrum and energy in (22) and
(23), respectively, were originally derived by Nuttall [2];
however, we have augmented those results here, to give detailed
expressions for the error and complex envelope waveforms and
spectra. There are no approximations in any of the above
relations; they apply to waveforms with arbitrary spectra,

whether carrier frequency fo is large or small.

EXTRACTED AMPLITUDE AND PHASE MODULATIONS

It is important and useful to also make the following
observations relative to the amplitude and phase modulations that

can be extracted from the complex envelope y(t). Define
A(t) = |yt)l P(t) = arg{y(t)]} . (29)

Then, from (14) and (24), the original waveform can be expressed

in terms of these extracted amplitude and phase modulations as

y(t) = Re{y(t) exp(i2mf_t)] = A(t) cos[2nf t + P(t)] . (30) |

However, complex-envelope modulations A(t) and P(t) in (29) and
(30) are not generally equal to imposed modulations a(t) and p(t)
in (1), as may be seen by reference to (25). Namely, complex
envelope y(t) is equal to complex lowpass waveform z(t) in (2)

only if error e(t) is zero. But the energy in waveform e(t), as

12
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given by (23), is zero only if imposed spectrum Z(f) in (3) is
zero for f < -fo. When z(f) is not zero for f < -fo, complex-~
envelope modulations A(t) and P(t) do not agree with imposed
modulations a(t) and p(t), despite the ability to write y(t) in
the two similar real forms (1) and (30) involving an amplitude-
and phase-modulated cosine with the same fo.

Another interesting property of form (30) is that its

quadrature version is identically the Hilbert transform of y(t).

This is in contrast with the quadrature version of (1) involving
imposed modulations a(t) and p(t); see (17) - (20). To prove
this claim, observe that the quadrature version of the last term

of (30) is, using (29),

a(t) = A(t) sin{2nf_t + P(t)] = (31)

= ;—%— [A(t) exp(iP(t) + i2nf_t) - A(t) exp(-iP(t) - iznf t)]
1 . * .
= 5ly(t) exp(12nfot) -y (t) exp(—lznfot)] . 132)
The spectrum of this waveform is

o(f) = p[ece-£,) - ¥ (~£-£)] = -iru(f) ¥(£) - U(-£) ¥H(-£)] =

=

{-i Y(f) for £ > O

} = -i sgn(f) Y(f) = Y, (f) , (33)
1 Y(f) for £ <O

where we used (27), the conjugate symmetry of Y(f), sgn(x) = +1

for x > 0 and -1 for x < 0, and (6) in the form

Y+(f) = 2 U(f) Y(f) = [1 + sgn(f)] Y(f) = Y(f) + 1 Yh(f) s (34)

13
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the latter result following from (15). Thus, (33) and (31) yield

the desired result

yu(t) = H% ® y(t) = q(t) = A(t) sin{?nfot + P(t)] . {35)

This simple connection between (35) and (30) holds in general
when modulations A(t) and P(t) are extracted from the complex
envelope according to (29); there are no narrowband assumptions
required. The more complicated connection between (16} and (1},
which is applicable for the imposed modulaticns, involves an
error term; this error is zero if and only if spectrum Z(f) in

(3) is zero for f < -fo.

SPECTRUM Y(f)} GIVEN

All of the above results have presumed that waveform y(t) in
the form (1) was available as the starting point. But there are
many problems of interest where spectrum Y(f) is the initial
available quantity, rather than y’t). For example, the output
spectrum Y(f) of a linear filter L(f) subject to input spectrum
X(f) is given by Y(f) = L(f) X(f) and can often be easily and
directly computed. In this case, there are no given amplitude
and phase modulations a(t) and p(t) as in (1); in fact, there is
not even an obvious or unique center frequency for a given
spectrum Y(f). Nevertheless, many, but not all, of the relations
above hold true under appropriate definitions of the various

terms.

14
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Given spectrum Y(f) with conjugate symmetry, Y(-f) = Y*(f),

we begin with its corresponding real waveform
y(t) = J df exp(i2nft) Y(£) . (36)
The Hilbert transform of y(t) and its spectrum are given by
yu(t) = = ® y(t) , Yy (f) = -i sgn(f) ¥(f) . (37)
The single-sided spectrum and analytic waveform are, respectively

Y (£) = 2 U(f) Y(f) = [1 + sgn(f)] Y(f) = Y(f) + i Y (f) , (38)

®
y (t) = 2 J df exp(i2nft) Y(f) = y(t) + i y,(t) . (39)
0
Up to this point, all the functions are unique and nothing
has changed. However, we now have to choose a "center frequency"”
fc of Y, (£}, since none has been specified; this (somewhat
arbitrary) selection process of fc is addressed in appendix A, to

which the reader is referred at this point. Hence, we take fC as

given and define lowpass spectrum
Y(£) = Y (£+£ ) = 2 U(E+E ) Y(f+f ) . (40)
The corresponding complex envelope is

y(t) = y,(t) exp(-i2nfct) . (41)

We define the complex-envelope amplitude and phase

modulations as in (29):

A(t) = |y(t)| , P(t) = arg(y(t)] = arg{y,(t)} - 2rf t . (42)

15
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Then, from (39), (41), and (42), we have

y(t) = Re{y (t}} = Rely(t) exp(ianct)] = A(t) cos[anCt + P(t)}.

(43)
Now when we define the quadrature version of the right-hand side

of (43) in a manner similar to (31), but now employing fC instead
of (unspecified) fo' the same type of manipulations as in

(31) - (35) yield relations identical to those given above:
Q(f) = YH(f) ¢ Yu(t) = q(t) = A(t) sin[2nfct + P(t)] . (44)

Because the choice of center frequency fc of single-sided
spectrum Y_(f) is somewhat arbitrary (see appendix A), this makes
complex envelope y(t) and its extracted phase P(t) somewhat
arbitrary. However, the argument, 2nfct + P(t) = argly_ (t)}, of
(43) and (44) is not arbitrary, as seen directly from (41) and
the uniqueness of Y, (t) in (39). Furthermore, extracted
amplitude modulation A(t) in (42) has no arbitrariness since it
is given alternatively by |y (t)|, according to (41).

Since A(t) and P(t) are lowpass functions, we can compute

them at relatively coarse increments in time t. Then, if we want
to observe the fine detail of y(t), as given by (43), we can
interpolate between these values of A(t) and P(t) and then
compute the cosine in (43) at whatever t values are of interest.
This practical numerical approach will reduce the number of
computations of A{(t) and P(t) required; in fact, in many
applications, A(t) and P(t) will themselves be the desired output
gquantities of interest, rather than narrowband waveform y(t) with

all its unimportant high-frequency detail.

16
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EXAMPLE

Consider the fundamental building block of systems with

rational transfer functions, namely
y(t) = U(t) exp(-at) cos(2nfot + ¢) , a >0, £ >0, (45)
where U(t) is the unit step in time t. Let
w = 2rf , w, = 2nf0 , C=qa - iwo . (46)
Then, from (1) and (2), the imposed modulations are

a(t) = U(t) exp(-at), p(t) = ¢, z(t) = U(t) exp(i¢-at) , (47)

yielding, upon use of (3) and (46), spectrum

- exp(ié¢) _ exp(i¢)
Z(f) = a+ 12nf  a + 1w (48)

From (5) and (48), the spectrum of y(t) is

= 1 exp(i¢) exp(-i¢)
Y(£) 2|la + 1(w -~ w,) Y aF i(w + w,) ! (49)

and (6) yields single-sided spectrum

= exp(i¢) exp(-i¢)
Y (f) = U(f)[a + 1(w - w,) T 1(w + wy)l o (50)

Now we use (9), (48), and (46) to obtain (negative) spectrum

0 for f >0

N(f) = u(-f) R4 - : (51)
ex 1
SRSt ftor £ <o

17
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Then, from (10), the corresponding complex time waveform is

0 c
n(t) = f df exp(iwt) gxg(ig) = exP(ig;Ct} f Qﬁ exp(tu) . (52)
- c-ie®
For t < 0, let x = |t]u = -tu, to get
clt]
ig-ct d i -
n(t) = SxRlg=ct) {—i exp(-x) = == exp(i¢-ct) E (clt]) , (53)
clt]-ie=

where Ey(2z) is the exponential integral [3; 5.1.1]. It is
important to observe and use the fact that the path of
integration in the complex x-plane in (53) remains in the fourth
quadrant and never crosses the negative real x-axis

{3; under 5.1.6}.

Also, for t > 0, let x = ~tu in (52), to get
-ct
n(t) = exp‘iggctl J g§ exp(-x) = >= exp(i¢-ct) E (-ct) . (54)
-Ct+iw

Here, the contour of integration remains in the second guadrant
of the complex x-plane and again does not cross the negative real
x-ax1is [3; under 5.1.6]. The combination of (52) and (54) now

yields complex time waveform

n(t) = 5% exp(i¢-ct) E1(~ct) for all t # 0 . (55)

18
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Now, we use (18) to obtain real error waveform

e(t) = - & Refexp(i¢-ct) E (~ct)] for all t # 0 . (56)

(Or we could directly use (20) with {48).) The corresponding

error spectrum follows from (22), (48), and (46) as

-i exp(-i¢)
" : for £ > 0
c + iw
E(f) = . (57)
iexp(id) ¢or £ <o
c + 1w

From (16), (17), (47), and (56), the Hilbert transform of

y(t) 1is

yH(t) = U(t) exp(-at) sin(an0t+¢) -

- % Rejexp(ié-ct) El(—ct)} for all t # 0. (58)

In addition, using (15) and (45), the analytic waveform is

Yy, (t) = U(t) exp(i¢-ct) - i % Re{exp(i¢-ct) El(-ct)]

for all t # 0. (59)

The complex envelope follows from (25), (47), and (56) as

y(t) U(t) exp(i¢-at) - % exp(-iwot) Re{exp(i$-ct) El(—ct)}

for all t # 0 . (60)

The corresponding spectrum is, from (27) and (50),

- exp(i¢) exp(-i¢)

19
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The extracted amplitude and phase modulations A(t) and P(t) of
complex envelope y(t) are now available by applying (42) to

(60). Since the first term, by itself, in (60) has the imposed
amplitude and phase modulations a(t) and p(t) as specified 1in
(47), A(t) cannot possibly equal a(t), nor can P(t) equal p(t).
This example 1is an illustration of the general property stated 1in
the sequel to (30). The reason is that spectrum Z(f) in (48) is
obviously nonzero for f < -fo.

From (23) and (48), the energy in error waveform e(t) 1s

2

Yo
1 - = arctan e . (62)

=

_fo
2]-—.—.&.—.:—1

2 2 2a
e & + W

For comparison, the energy in desired component z(t) in complex

envelope y(t) of (25} 1is, from (47),

Jdt |z(t)|2=§—‘1;. (63)

-0

20
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SINGULAR BEHAVIOR
Since [3; 5.1.11 and footnote on page 228)
El(z) = - 1ln(z) - vy + Ein(z) , (64)

where Ein{z) is entire, the error waveform in (56) has a

component

- & Re{-exp(i¢-ct) In(-ct)} =

% Re{exp(i¢-ct) [ln(-c sgn(t)) + 1njt|)] for t # 0 , (65)
of which the most singular component is
% Injt] exp(-at) cos(w,t + ¢) ~ % cos(¢) ln|t| as t = 0 . (66)

The only situation for which this logarithmic singularity does
not contribute an infinity as t % 0 is when ¢ = - n/2 (or n/2).

That corresponds to the special case in (45) of

y(t) U(t) exp(-at) sin(wot) for ¢ = - n/2 , (67)

which 1s zero at t = 0; that is, y(t) is continuous for all t.
However, even for ¢ = - n/2 in the first term of (66), the
product 1lnjt] sin(wot) has an infinite slope at its zero at

t = 0, leading possibly to numerical difficulties.

The spectrum Y(f) follows from (49) as

“s R
Y(f) = 5 3 7) for ¢ = - 5 (68)
a” + W, + i2aw - w
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which decays as w-z as w - *=; this spectral decay is the key
issue for avoiding a logarithmic singularity in e(t), yyult),
y+(t), and y(t). All values of ¢ other than *n/2 lead to
asymptotic decay of Y(f) in (49) according to -i cos(¢) w"l,
which leads to a logarithmic singularity in the various time
functions considered here, including the complex envelope.

Continuing this special case of ¢ = - n/2 in (67) and (68},
we find, from (48),

-1

2(f) = 1o z(t) = U(t) (-i) exp(-at) for ¢ = - % . (69)

Also, there follows from (56), (58), and (60), respectively, the

error, the Hilbert transform, and the complex envelope, as

e{t) = -~ % Imiexp(-ct) E1(~ct)] ‘ (70)
yH(t) = - U(t) exp(-at) cos(wot) + e(t) , (71)
y(t) = U(t) (-i) exp(-at) + 1 exp(—iwot) e(t) ., (72)
all for ¢ = - n/2.

The asymptotic behavior of error e(t) at infinity 1is

available from [3; 5.1.51] as

N

as t @ *= for ¢ = - (73)

N
|
t]r

The origin behavior is available from [3; 5.1.11]:
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- % arctan(wo/a) as t » 0-

e(t) ~ for ¢ = -

ST

(74)

1 - % arctan(wo/a) as t » 0+

Observe that these limits in (74) at t = *0 are both finite.
Also, note the very slow decay in (73), namely 1/t, of ervor e(t)
at infinity.

when ¢ # *n/2, the generalizations to (73) and (74) are

{3; 5.1.51 and 5.1.11]

a cosé¢ - W, sin¢

1
e(t) ~ — as t 2 = , (75)
O(2 + wZ nt
o)
and
e(t) ~9%§[11n|t| as t » 0 . (76)

Now, error e(t}) becomes infinite at the origin and decays only as
1/t for large t. (If tan¢ = a/wo, then e(t) = O(t_z) as t o *w;

this corresponds to Y(0) = 0 in (49).)
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GENERAL HILBERT TRANSFORM BEHAVIOR

The example of y(t) in (45) (when ¢ # *n/2) illustrates the
general rule that if a time function has a discontinuity of value
D at time to, then its Hilbert transform behaves as D/n lnlt«tol

as t » to' To derive this result, observe that
1
y(t) V + 3D sgn(t-t ) as t >t ., (77)

when y(t) is discontinuous at to. Then, for t near to’ the

Hilbert transform of y(t) is dominated by the components

= aTe

!
M Te—nm

yy(t) ~ du [v + %D sgn(t—to‘u)] +

cu [v + %D sgn(t-to-u)] , (78)

4+
==

where £ is a small positive quantity and the principal value
nature of the Hilbert transform integral has been utilized. The
integrals involving constant V cancel; also, by breaking the
integrals in (78) down into regions where sgn is positive versus
negative, and watching whether t-t/ is positive or negative, the

terms involving ln(e) cancel, leaving the dominant behavior
y, (t) ~ D In|t-t | as t » t_ . (79)
H nt o] o]

(The example in (66) corresponds to a discontinuity D = cos(¢) at

t, = 0, as may be seen by referring to (45).) When Hilbert
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transform Yu(t) has this logarithmic singularity (79), then so
also do y_(t), y(t), and e(t) at the same time location. Thus,
the complex envelope corresponding to a discontinuous y(t) has a
logarithmic singqularity.

An alternative representation for Hilbert transform yh(t) in

(15) 1is given by
yH(t) = j df exp(i2nft) (-1i) sgn(f) Y(f) . (80)

If Y(f) decays to zero at f = *» and if Y(f) is continuous for
all real f, then an integration by parts on (80) yields (due to

the discontinuity of sgn(f)) the asymptotic decay
yp(t) ~ 2L as £ 9 2e . (81)

(Results (73) and (75) are special cases of (81), when applied to
example (49).) The only saving feature of this very slow decay
for large t in (81) is that Y(0) may be small relative to its

1 for

maximum for f #¥ 0. For example (49), IY(fO)I £ (20)7
a << Wy, which is then much larger than Y(0) = - sin¢/wo. In
this narrowband case, the slow decay of (81) will not be overly
significant in analytic waveform y_(t) until t gets rather large.
I1f Y(0) is zero, the dominant behavior is not given by (81), but

instead is replaced by a l/t2 dependence, with a magnitude

proportional to Y’ (0).
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GRAPHICAL RESULTS

We now take the example in (45) with parameter values

o« = 1 sec™?!

and fo = 100 Hz. The error e(t) in (56) is plotted
versus time t in fiqure 3 for three different values of phase $¢.

A time sampling increment A, of .02 msec was used to compute

t
(56), since these error functions are very sharp in t, being
concentrated around t = 0 where the waveform y(t) has its
discontinuity. The period of the carrier frequency is 1/7£, = 10
msec; however, the error functions vary significantly in time
intervals less than 1 msec. These functions approach -« at

t = 0, according to (66), except for ¢ = -n/2.

The corresponding complex envelope is given by (72); its
magnitude is plotted in figure 4 over a much wider time interval.
The straight line just to the right of the origin is the desired
exponential decay a(t) = exp(-at), which dominates the error e(t)
in this region of time. Eventually, however, for larger t or
negative t, the error e(t) dominates, with its much slower decay
rate. It is readily verified that the asymptotic behavior
predicted by (75) is in control and very accurate near both edges
of figure 4.

At the transition between the two components, the random
vector addition in (72) leads to large oscillations; the period
of the carrier is l/fo = 10 msec, meaning that the transition
oscillations in figure 4 have been grossly undersampled with the
time increment 4, approximately 40 msec that was used. The error

curve for ¢ = 0 is much smaller than the other two examples over

26
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most of its range; however, the magnitude error goes sharply to o
at t = 0.

From (72) and figqure 4, it is seen that for ¢ = -n/2, the
phase P(t) of complex envelope y(t) is essentially -n/2 for
t > 0, until we reach the transition. To the right of the
transition, the phase of y(t) exp(iwot) is essentially n/2
because e(t) > 0 for t > 0, for this example. For t < 0, the
phase of y(t) exp(iwot) is -n/2 because e(t) < 0 for t < 0. We
will numerically confirm these claims later when we compute the

analytic waveform and complex envelope by means of FFTs.
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FILTERED COMPLEX ENVELOPE

It was shown in (26) that the spectrum Y(f)} of the complex
envelope y(t) of a given waveform y(t) with complex imposed
modulation z(t) is given by a desired term Z(f) plus an undesired

error term, namely,
Y(f) = Z2(f) + 1 E(f+fo) . (82}

According to fiqures 1 and 2, the major contribution of the first

0, while the undesired second

]

term, Z(f), is centered around f

term in (82) is centered about f -f . This suggests the

o

possibility of lowpass filtering complex envelope spectrum Y(f)
in order to suppress the undesired frequency components. Also,
this will eliminate or suppress the undesired logarithmic

singularities present in the complex envelope y(t).

LOWPASS FILTER

To this aim, let H(f) denote a lowpass filter with H(0) = 1
and cutoff frequency, fl’ smaller than fo‘ For example, the Hann

filter is characterized by

cosz{% %—) for |£f}] < £
H(f) = 1 i (83)

0 otherwise
The filtered complex envelope spectrum 1is, in general,

G(f) = Y(£f) H(E) . (84)
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The importance of having £, < £ is that filter H(f) will then

o
smoothly cut off its response before reaching the discontinuity
at £ = —fo of the spectrum Y(f) of the complex envelope y(t): see
(27). In this way, we can avoid the slowly decaying behavior of
the complex envelope y(t) fur large t, namely 1/t, which
inherently accompanies its discontinuous frequency spectrum.
This will prove important when we numerically evaluate the
filtered complex envelope, by sampling (84) at equispaced
frequencies and performing a Fourier transform into the t domain,
necessarily encountering the unavoidable aliasing in time
associated with such a technique.

Since the complex envelope y(t) is given by (25) as the sum

of desired component z(t) and an error term, the filtered

waveform corresponding to spectrum G(f) in (84) is given by

g{t) = y(t) @ h(t) =

I

z(t) ® h(t) + [i e(t) exp(-i2nf t)] @ h ) = (85)

= g4lt) + g (t) , (86)

where @& denotes convolution, h(t) is the impulse response of
the general filter H(f) in (84), and gd(t) and gu(t) are,
respectively, the desired and undesired components of the
filtered complex envelope g(t). We should choose filter H(f) to
be real and even; then impulse response h(t) is alsn real and
even.

The Hann filter example in (83) could be replaced by a filter

with a flatter response about f = 0 and a sharper cutoff
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behavior. The major features that filter H(f) should have are a
fairly flat response in the Z(f) frequency range near f = 0, but
cut off significantly before getting into the major frequency
content of error term E(f+f0), which 1s centered about f = -fo.
If the given waveform y(t) in (1) is not really narrowband, there
may not be any good choice of cutoff frequency fl; that 1is, it
may be necessary to sacrifice some of the higher frequency

content of z(t) or to allow some of the error e(t) to pass.

EXAMPLE

We again consider the example given in (47) and (48), along
with the Hann filter in (83). 1In order to evaluate the filtered

complex envelope g(t) in (86), we define an auxiliary function
E{z) = exp(z) El(z) ‘ (87)

where E,(z) is the exponential integral [3; 5.1.1]. Then, when

we use the fact that (83) can be expressed as

H(E) = 2 + 2 exp(inf/f)) + & exp(-inf/f,) for |£] < ¢

7] (88)

l ’

we encounter the following two integrals. First, we need the

result
| o1
exp(lwt+1w§n/f1) (-1)"
f df =T i2w0 ey T exp(~1w1t)E(un)—exp(1w1t)E(vn)] ,
~f
1

(89)
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where w = 2rf, n is an integer, f1 < fo’ and we defined
. . 1
u, = -(a + 12w0 - 1w1)(t + fn/fl) ’
. . 1
v, = -(a+ 12wo + 1w1)(t + §n/f1) . (90)
To derive this result, we let x = -(a + i2uy + iw)(t + 4n/f;) in

(89) and used [3; 5.1.1), along with the important fact that
f1 < fc’ which guarantees no crossing of the negative real axis
of the resulting contour of integration in the complex x-plane.

Also, when we define

- =0 = ; 1
u, = un(fO—O) = -(a - iw;)(t + 2n/fl) '
= . 1
v, E Vn(fo=0) = -(a + lw,)(t + 7n/f1) ’ (91)

then for fo = 0, we find the second integral result required,

namely,

' ="
a + 1w i2n

t 1
exp(iwt+iw§n/f1) .
J df exp(-iw;t)E(u )-exp(iw;t)E(y )| +
-f

1
>

+ U(t + %n/fl) exp(-at - %an/fl) . (92)

The extra term in the second line of (92) is due to a crossing of
the negative real axis in the complex x-plane by the contour of
integration when we make the substitution
X = - (a + iw)(t + %n/fl) in the integral of (92).

The desired component of the filtered complex envelope is

given by the first term of (85) and (86), in the alternative form
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gqit) = J df exp(i2nft) z(f) H(f) =

f
1
= J df exp(i2nft) gﬁgiigl cosz(% %—) = (93)
-f 1
- o+ b+ o) emlity) + dole - 2] omwlet)] -

+ I%E(exp(-iwlt)[E(go) - 3 Buy) - 3 B(u _p] -

2] (4

Here, we also used (48), (88), and (92). Since the factor

- exp(in t) [E(vy) - 3 E(yy) - 3 E(

1<

multiplying exp(i¢) in (93) has conjugate symmetry in frequency
f, the time function multiplying exp(i¢) in (94) is purely real
for all time t.

The undesired spectral component in (82) is given by
. %*
i E(f+fo) = Z (-f-2fo) for £ > —fo ’ {95)

where we used (22). Therefore, using restriction f1 < fo' the
undesired time component in the filtered complex envelope in

(86) is given, upon use of (89), by
£

gu(t) = f df exp(i2nft)
~-f

exp(-i¢)
o + 12w° +1iw

2{n £
cos (5 | =
E &)
1
- e_xaL;lﬂ[exp(_iwlt;iE(uo) - 3 E(u;) - 3 E(“-l’] )

14n

- exp(iwlt){E(vo) - % E(v,) - 3 E(v_l)l] . (96)
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In contrast with (94), the time function multiplying phase factor
exp(-1¢) in (96) is complex. The total time waveform at the
filter output, g(t), namely the filtered complex envelcpe, is
given by (94) plus (96), and depends on ¢. In fact, since the
magnitude of total output g(t) depends on ¢, we will look at
plots of the magnitudes of components ]gd(t)l and !gu(t)l,
neither of which depend on 4.

For comparison, the complex envelope itself is given by (25)
in the form y(t) = z(t) + i e(t) exp(-i2nfot). Since these two
(unfiltered) components depend differently on phase ¢, we shall
also consider only their magnitudes |z(t)| and |e(t)| and compare
them with filtered components Igd(t)l and Igu(t)l, respectively.
In particular, from (48), the desired component of the complex

envelope y(t) for the example at hand is
z(t) = exp(1i¢ - at) U(t) for all t , 97)
while the undesired portion is given by (56) and (87) as
e(t) = - %Re{exp(i¢ - ct) El(—ct)} = - %Re{exp(i¢) E(-ct)] (98)

for t # 0, where ¢ = a - iwo. The magnitude of complex waveform

z{t) 1s independent of ¢, but the magnitude of real error

waveform e(t) still depends on ¢; see figure 3.

The magnitudes of z(t) and g4(t) for a =1 sec™! and
f1 = 40 Hz are displayed in figure 5 on a logarithmic ordinate.
The filtered complex envelope component, gd(t), drops very

quickly to the left of t = 0 and 1is indistinguishable from z(t)

for t > 0; compare with figure 4. Thus, the passband of the Hann
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filter H(f) in (B3) has been taken wide enough to pass the
majority of the frequency components of desired function Z(f) in
this example. The darkened portion of the plot just to the left
of t = 0 corresponds to a weak amplitude-modulated 40 Hz
component, which is the cutoff frequency fl of filter H(f).

The magnitudes of g,(t) and error e(t) are displayed in
figure 6 for the additional choice of parameters fo = 100 Hz and
¢ = -n/2 rad. The peak values of these undesired components at
t = 0 differ by over a factor of 10, through this process of
filtering the complex envelope. At the same time, the skirts of
filtered version g,(t) are down by several ciZers of magnituce
relative to e(t). The thick plot of Igu(t)l is again a 40 Hz
component, which has been sampled at a time increment 8, = .002
sec.

For phase ¢ = 0 instead, original waveform y(t) in (45) is
discontinuous at t = 0, giving rise to a Hilbert transform which
has a logarithmic infinity there; see (77), (78), and (79).
Therefore, the magnitude of error e(t) in fiqure 7 has an
infinity at t = 0, whereas the filtered quantity g,(t) is finite
there; in fact, |gu(t)| is independent of ¢. Although e(t) is
significantly reduced in value, away from the origin, relative to
figure 6, it is still larger than the filtered quantity g,(t)-
Since the energy in error waveform e(t) is independent of ¢ (see
(62)), smaller skirts in e(t) can only be accompanied by a larger
peak; in fact, this latter case for e(t) in figure 7 has an
infinite (integrable) peak at t = 0. By contrast, the energy in

the filtered undesired component gu(t) is, from (82) and (84),
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[ af (eceee )12 weer1? (99)

which can be considerably less than the error energy, when filter
H(f) significantly rejects the displaced esrcr spectrum E(f+ro).
This example points out that considerable reduction of the
undesired error term in the complex envelope can be achieved
through the use of lowpass filtering with an appropriate cutoff
frequency, and that the undesired singularities can be signif-
icantly suppressed. Furthermore, the desired component of the
complex envelope can be essentially retained. These conclusions

follow if the bandwidth of the imposed modulation, z(t) in (1)

and (2), is small relative to the carrier frequency f_.

N l.Hsgc)S . .

Figure 5. Filtered Complex Envelope; Desired Terms
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TRAPEZOIDAL APPROXIMATIONS TO ANALYTIC WAVEFORM,
COMPLEX ENVELOPE, AND FILTERED COMPLEX ENVELOPE

In this section, we address methods of evaluating the
analytic waveform and the complex envelope by means of FFTs.
We start by repeating the results in (6) and (8) for the

analytic waveform, that is,

Y, (f) = 2 u(f) Y(f) , (100)

y, (t) = f df exp(i2nft) Y, (f) = j df exp(i2nft) 2 Y(f) . (101)
0
The trapezoidal approximation to (101) is obtained by sampling

with frequency increment 4 to get

w

) Eq exp(i2nnat) 2 Y(nd) = (102)
n=0

Y (t)

o

| af exprizngt) 2 v(£) o 8,(f) =
0

]

"

v (t) @ 8 ,(t) =T _y,[c -8, (103)
n

where sequence £, = % and Eq = 1 for n 2 1, and summations
without limits are from -« to +,

Notice that approximation §+(t) is a continuous function of
time t and has period 1/4 in t. The desired term in (103) is
that for n = 0, namely analytic waveform y,(t). Because y_(t)

can contain a slowly decaying Hilbert transform component, the

aliasing at separation 1/4 in (103) can lead to severe distortion
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in approximation y_(t) defined in (102).

Since §+(t) has period 1/A in t, we can confine its
computation to any interval of length 1/A. 1In particular, if we
divide this interval into N equally-spaced points (where integer

N is arbitrary), we can compute, from (102),

~ ( K ® .
Y+[ﬁZ] = A %;% €, exp(i2mnk/N) 2 Y(na) (104)

for any N contiguous values of k. If we choose the range
0 £ k £ N-1, and if we collapse the infinite sequence in the
summaad of (104) according to

(-]

z = 240 %=0 En+jN Y(nd + jNA) for 0 £ n € N-1 , (105)

then (104) can be written precisely as

~ k N-1 .
y+[EK] =) _ exp(i2mnk/N) z, - (106)

~ —

This last result can be accomplished by means of an N-point FFT
if N is highly composite. This is a very efficient method of
computing the aliased version of the analytic waveform as defined

by (102).
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COMPLEX ENVELOPE

The center frequency fc of single-sided spectrum Y (f) in
(100) can be found by the method described in appendix A. Then

the complex envelope spectrum and waveform are, respectively,

Y(f) = Y+(f+fc) , (107)
y(t) = I df exp(i2nft) Y(f) =
= I df exp(i2nft) Y+(f+fc) = exp(—ianCt) y+(t) . (108)

The approximation to complex envelope y(t) is achieved by

relating it to that for analytic waveform y,(t) according to

y(t) = exp(-i2nf _t) v (t) = (109)
= exp(-i2nf_t) A - €, exp(i2mndt) 2 Y(na) , (110)
n=0

where we used (108) and (102). The continuous function
exp(ianct) i(t), which is just §+(t), has period 1/4 in t, which
simplifies its calculation. Using (109), (103), and (108), there

follows, for the approximation to the complex envelope,

~ . n} _ n s
y(t) = exp(-i2nf_t) Z;: y+[t - K] = Z;: y{t - A) exp(-i2rf_n/4)
(111)

The desired term in (111), for n = 0, is complex envelope y(t).
The n-th term has a time delay (aliasing) of n/4 and a phase

shift of n2nfC/A radians, which is arbitrary because frequency
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sampling increment A in (102) is unrelated to centeir frequency

fC of Y (f) in (100).

Sample values of complex envelope approximation i(t) can be
obtained from (110) as
k

@
exp{-ianc ﬁK] A %=O €, exp(i2nnk/N) 2 Y(na) . (112)

2

po——

gl

Lallas
L]

Again, the infinite sum in (112) can be collapsed and realized
as an N-point FFT; see (104) - (106). The phase factor

Py = exp(—iznfck/(NA)) can be computed via recurrence

Py = Py.; e¥p(-i2rnf_/(NA)).

FILTERED COMPLEX ENVELOPE

The spectrum of the filtered complex envelope is given by
(84) as G(f) = Y(f) H(f). The filtered complex envelope waveform

is
g(t) = J df exp(i2nft) G(f) = y(t) ® h(t) (113)

and has low sidelobes and rapid decay in t, when filter H(f) is
chosen appropriately.

The approximation to g(t) adopted here will be generalized
slightly in order to allow for frequency-shifted sampling.

Specifically, we define
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-~

3 (t) = j df exp(i2nft) G(f) A §,(f - a) = (114)

= A )  exp(i2n[nA + a]t) G(nd + a) . (115)
n

The function exp(-i2nat) aa(t) has period 1/8 in t, which allows
us to confine its calculation to any convenient period.

The behavior of approximation Ea(t) in (114) follows as
9o (t) = g(t) & [exp(iZmat) &, ,(t}] =

= : - p_ =
= g(t) @ Z;: exp(i2nan/4) &[t A]
=3  exp{(i2man/a) g[t - %} . (116)
n

This is the aliased version of the filtered complex envelope.

The desired term, for n = 0, is the filtered complex envelope

g(t), independent of the choice of frequency shift a. Shift a
is arbitrary and could be taken as -fC if desired.

Samples of Ea(t) are available from (115) according to
au(ﬁ%} = A exp(i2na ﬁ%} ) exp(i2rnk/N) G(nA + a) , (117)
n

which we can limit to 0 £ k § N-1 due to the periodicity of
aa(t). Again, the infinite sum on n can be converted to an

N-point FFT without error, by collapsing into the finite sequence

z, = A E) G(nA + a + jNA) for 0 £ n £ N-1 . (118)
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The remaining phasor exp(i2nak/(NA)) in (117) can be quickly

obtained via recursion on k.

GRAPHICAL RESULTS

The same fundamental example introduced in (45) will be
used here, again with a = 1 sec'1 and fo = 100 Hz. For phase
$ = -n/2, FFT size N = 1024, and a frequency increment of

A 1/80 Hz, the magnitude of i(t), namely A(t), is displayed in

]

figure 8 over the 1/4 = 80 sec period centered at t = 0. This
selection of the time period has been purposely made the same as
that used in figure 4, for easy comparison of results. The major
difference between the ¢ = -n/2 result in figure 4 and fiqure 8
is that the aliasing in the latter case causes the curve to have
a jagged behavior and to droop in the neighborhood of t = *40
sec. However, other examples could well have the aliasing
increase near the edges of the period. A total of 88,000 samples
of Y(f) at frequency increment A were taken in computation of
(104); the collapsing in (106) resulted in storage of only
N = 1024 cumplex numbers and the ability to use a single
relatively small N-point FFT. A program for the evaluation of
the complex envelope by means of an FFT with collapsing is
furnished in appendix B; the FFT uses a zero-subscripted array in
direct agreement with the mathematical definition of the FFT.

The corresponding phase, P(t] = arg{i(t)}, of the aliased
complex envelope is given in fiqure 9. The phase is

approximately -n/2 for 0 s t § 10 sec, as expected, since in
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this limited time interval, the error is not the dominant term.
However, over the rest of the period, the error term does
dominate and it has an exp(—iwot) behavior, where fo = 100;

see (25) and figure 3. Thus, the time sampling increment

At = 1/(NA) = .078 sec is grossly inadequate to track this
high-frequency term, and we get virtually random samples of the
phase of the complex exponential exp(—iwot).

To confirm the phase behavior outside the (0,10) sec
interval, we have plotted the phase of y(t) exp(iwot) =y, (t) in
figure 10 as found by the FFT procedure above. To the right of
t = 10, the phase is approximately n/2, in agreement with the
fact that e{(t) is real and positive for t > 0; see figure 3 and
(25). For time t < 0, the phase 1s -n/2 because e(t) < 0 for
t < 0. The oscillatory behavior at both edges of the period,
namely, for 30 < |t| < 40, is due to aliasing from adjacent lobes
indicated by (103) and (111).

When ¢ is changed to 0 and everything else is kept unchanged,
the result for the magnitude of complex envelope aliased version
i(t) is plotted in figure 11. Comparison with the exact results
in figure 4 reveals a very dramatic increase in aliasing, in
fact, by two orders of magnitude. The reason for this
considerable increase can be seen from figure 3 and (75); namely,
the error e(t) is unipolar for ¢ = 0 and it decays very slowly.
Whereas for figure 8, the alternating character of the over-
lapping aliased error lobes led to a cancellation near t = #40

sec, the opposite situation occurred in fiqure 11, leading to a
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considerable build-up of the aliasing effect.

The corresponding phase of i(t), P(t), is plotted in figure
12. Its value is zero in the region 0 s t £ 10, as expected,
since the desired term, exp(-at), dominates here. Outside this
region, the situation is the same as explained above with respect
to figure 9. We have not plotted the counterpart to figure 10
because no one error lobe dominates anywhere on the time scale;
the result is a phase plot that looks random over the entire
period of (-40,40) sec.

When the complex envelope spectrum is filtered according to
the Hann filter in (83) - (86), the results for the sampled
filtered complex envelope waveform, obtained by means of the
collapsed FFT in (117) and (118) with a = 0, are given in figures
13 and 14. There were 6400 frequency samples taken of G(f) with
increment 4 = 1/80 Hz and an FFT size of N = 1024 was utilized;
see appendix B. A comparison of the magnitudes in figures 13 and
5 reveals virtually identical results; namely, the error and its
inherent accompanying aliasing, that was present in figure 8, is
absent from figure 13.

The corresponding phase plot of the FFT output is displayed
in figure 14. 1In the region 0 $ t £ 24 sec, where the desired
exp(-at) term dominates, the FFT output phase is equal to the
value of ¢ = -n/2 for this example. When this example was rerun
for ¢ = 0, similar high quality results were obtained, except
that the FFT output phase was zero. The benefits of filtering
the complex envelope spectrum are well illustrated by the results

of figures 13 and 14.
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ALIASING PROPERTIES OF COSINE AND SINE TRANSFORMS

If a time function is causal, it can be obtained :@:om its
Fourier transform either by a cosine or a sine transform.
However, when these integral transforms are approximated, by
means of sampling the frequency function and using some
integration rule like trapezoidal, the "alias-free" interval in
the time domain is approximately halved, as shown below. This
does not necessarily mean that these transform alternatives
should be discarded, because a more rapidly decaying integrand
can be useful, but it does point out a cautionary feature in
their use and the need to consider the tradeoff between aliasing

and truncation error.

GENERAL TIME FUNCTION

In general, complex time function y(t) is obtained from its

Fourier transform Y(f) according to

y(t) = J df exp(i2nft) Y(f) = (119)
= f af cos(2nft) Y(f) + i j df sin(2nft) Y(f) = (120)
= ye(t) + yo(t) for all t , (121)

where complex functions ye(t) and yo(t) are the even and odd

parts of function y(t), respectively.
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CAUSAL COMPLEX TIME FUNCTION
Now suppose that y(t) is causal, but possibly complex; then
y(t) =0 for t < 0 . (122)
Then, letting t = -a, a > 0, we have, from (122) and (121},
0 =y(-a) = y (-a) + y,(-a) =y,(a) - y,(a) for a >0 . (123)
That 1is,

yo(a) = ye(a) for a > 0 . (124)

Therefore, from (121) and (120), we have two alternatives for a

causal complex time function y(t):

y(t) = 2 j af cos(2nft) Y(f) for t > O , (125)

and

y(t) = i2 j df sin(2nft) Y(f) for t > 0 . (126)

We need complex function Y(f) for negative as well as positive
frequency arguments f, in order to determine causal complex
function y(t), but we can utilize either a cosine or a sine

transform.
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NONCAUSAL REAL TIME FUNCTION

Now suppose instead that y(t) is real, but noncausal. Then,

since spectrum Y(-f) = Y*(f), we can express (119) as
y(t) = 2 Re I df exp(i2nft) Y(f) = (127)
0
© (<]

= ZJ df cos(2nft) Yr(f) - 2J df sin(2nft) Yi(f) for all t. (128)
0 0

The first term in (128) is even part ye(t), while the second term
in (128) is odd part Yo(t): see (121). In this case of a real

time function y(t), we need complex function Y(f) only for £ > 0.

CAUSAL REAL TIME FUNCTION

Now let y(t) be both causal and real. Then using property

Y(-f) = Y*(f) in (125) and (126), we obtain

@

y(t) = 4 I df cos(2rft) Y_(f) for t > 0 , (129)
0
and
y(t) = -4 J df sin(2nft) Yi(f) for t > 0 . (130)
0

Here, we need either Yr(f) or Yi(f), and then only for positive
frequency arguments f. Also, a cosine or a sine transform will

suffice for determination of y(t).
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ALIASING PROPERTIES

The above relations have all assumed that spectrum Y(f) is
available for all continuous f. Now we will address the effects
of only having samples of Y(f) available at frequency increment

4. We begin with the trapezoidal approxima*ion to (119}:

y (t) =2 Y exp(i2nnAt) Y(na) for all t . (131)
n

The approximation y;(t) is periodic in t with period 1/4. It

can be expressed exactly as

Yy (t) = J df exp(i2rft) Y(f) A4 BA(f) = (132)

= y(t) ® &, ,,(t) = 2; y[t - %] for all t . (133)

That 1is, approximation yq(t) is an aliased version of desired
waveform y(t), with displacements 1/4 in time. This result holds
for any complex waveform y(t) and has been used repeatedly in the
analyses above.

The second approximation of interest is obtained from the
cosine transform in (125), which applies for causal complex y(t)

in the form

Yoo (t) = 28 Y. cos(2nnat) Y(na) for all t . (134)
n

Yoclt) also has period 1/4 in t and can be developed as follows:
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Yoclt) = & Y. [exp(i2nnAt) + exp(-i2nnAt)) Y(na) =
n

fl

= I df [exp(i2nft) + exp(-i2mft)] Y(f) A 6A(f)

= [y(t) + y(-t)] @ 8, ,,(t) = 2y, (t) &8, ,(t)

= 2; [y(t - %] + y[% - t}] for all t . (135)

That is, sampling of the cosine transform in (125) results in
aliasing of y(t) plus its mirror image y(-t), even when y(t) is
causal. This will restrict useful results in Yoc(t) to a region
approximately half as large as that given by (131) and (133),
where the sampled exponential transform was used. Even when we
restrict calculation of approximation Yoc(t) to the region
(0,1/4), we are contaminated by the mirror image lobe y(l1/4 - t)
and by the usual lobe y(t + 1/8) extending from t = -1/A into the
desired region.

A similar situation exists for using a sampled version of the
sine transform for causal complex y{t) in (126); namely, consider

the approximation

Yog(t) = i28 Y sin(2nnaot) Y(na) for all t . (136)
n

Then
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Ypg(t) =8 Y [exp(i2nnAt) - exp(-i2mnAt)] Y(nd) =
n

= [ af rexp(iznft) - exp(-iznft)] Y(f) & §,(f) =

= [y(t) - y(-t)] ® &, ,(t) = 2 y (t) @ &; ,,(t) =

- EE[y[t -8 -y -t)] forame. (137)

Here, for the approximate sine transform, twice the odd part of
causal complex y(t) is aliased with separations 1/4 in time,
thereby again leading to a clear region only about half that
attainable from (131) and (133). We will return to these
apparently undesirable transform properties below and find them
useful when we consider a causal real time function.

The next approximation is for the noncausal real waveform
result in (127); namely, letting €y = ) and e, =1 forn21, we

have trapezoidal approximation
y3(t) = 2 Re A E £, exp(i2nnadt) Y(na) for all t . (138)
n=0
Then

y;(t) = 2 Re J df exp(i2nft) Y(f} & 8,(f) = |
0

= I df exp(i2nft) Y(f) A 6A(f) = 2: y(t - %} for all t , (139)
n
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just as in (133). Thus, the combination of the cosine and sine
transforms in (128) does not additionally damage the aliasing
behavior associated with sampling. In practice, we would use the
real part of the exponential transform as given by (127). The
same result, (139), follows when the cosine and sine transforms
in (128) are individually directly approximated by the
trapezoidal rule and the results added together.

The two final approximations ot interest come from sampling
the results for causal real y(t) in (129) and (130); from (129},

define approximation
y4c(t) = 4A E €, cos(2nnit) Yr(nA) for all t , (140)
n=0

which has period 1/4 in t. Now we develop (140) as

]

Yaelt) = 228 25 cos(2rnit) Y _(na)

2 I df cos(2nft) Y_(£) & §,(f)

2 J df exp(i2nft) Y_(f) & 8,(f) =
= J df exp(i2nft) [Y(f) + Y (£)) & 8,(£) =
= y(t) @ &) ,,(t) + Yy (-t) @ &5 5 (t)

= 2; y[t - 3) + }; y(% - t) = 2 y (t) ® 8, ,,(t) for all t, (141)

(=g
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where we used the real character of y(t).

This end result is identical to (135); however, approximation
Yqe(t) in (140) uses only the real part Yr(f) of the complex
function Y(f), whereas yzc(t) in (134) requires the complete
complex function Y(f) for a causal complex y(t). Since it is
possible to have complex functions Y(f) which have rapidly
decaying real parts and slower decaying imaginary parts, (140)

affords the possibility of getting a smaller truncation error

than (134), when y(t) is causal real and when both sums are
carried out to the same frequency limit, because both sums must
be terminated in practice. Whether the reduction in the usable
"alias-free" region, dictated by (141), can be traded off against
a smaller truncation error associated with use of only the real
part Yr(f) in (140), depends on the particular example under
investigation. 1In any event, (140) affords an alternative to
consider for causal real y(t).

The final approximation comes about by sampling (130):

©

(t) = -44 E sin(2nnAt) Yi(nA) for all t , (142)

Y
4s =1

which has period 1/4 in t. In the usual fashion, we find
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Yag(t) = -28 2; sin(2nnat) Y, (na) =

-2 f df sin(2rft) Y (f) & 8,(f) =

It

i2 I df exp(i2nft) Y,(f) & §,(f) =
= J df exp(i2nft) [Y(f) - Y (f)] & 8,(f) =
= y(t) ® 8;,,(t) = ¥ (-t) ® &, ,,(t) = 2 y (t) ® & ,(t) =
= 2; y[t - %] - 2; y[% - t] for all t . (143)

Here, we used the real character of y(t).

The end result in (143) is identical to (137); however,
qu(t) in (142) only requires knowledge of the imaginary part
Yi(f) of complex function Y(f), whereas yzs(t) in (136) requires
the complete complex function Y(f) for a causal complex y(t).
This is due to the fact that (129) and (130) apply only to causal
real y(t), whereas (125) and (126) apply to causal complex y(t).
Since there exist complex functions Y(f) which have more rapidly
decaying imaginary parts than real parts, the opportunity arises
to reduce the truncation error by employing (142) instead of
(136), when y(t) is causal and real. The comments in the sequel
to (141), regarding the trade-off between truncation error and a

reduced alias-free region, are again applicable.
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This procedure, of using only the imaginary part of a Fourier
transform because it decays faster than the real part, was
utilized to advantage in [4; pages 4 - 6] and was based upon an
earlier result in [5; (15)]. The very rapid decay of the

imaginary part far outweighed the aliasing; see [4; page 6].

EVALUATION BY MEANS OF FFTs

If periodic function yy(t) in (131) is evaluated at the
equally spaced time points k/(NA) for k=0 to N-1, which suffice

to cover one period, we obtain

yl{ﬁ%) = A ) exp(i2nnk/N) Y(na) = (144)
n
N-1

=47 exp(i2nnk/N) zZ o (145)
n=0

where {zn}, 0 < n £ N-1, is the collapsed version of sequence

{¥Y(nd)}, -» < n < ®. No approximations are involved in this

collapsing procedure from (144) to (145). Relation (145) can be

accomplished by means of an N-point FFT if N is highly composite.
In a similar fashion, (140) yields samples of the cosine

transform as
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«©

K _ =
y4c[§3 = 44 ;30 € cos(2nnk/N) Yr(nA) =
= 4A Re é=0 exp(i2nnk/N) €, Yr(nA) = (146)
N-1
= 44 Re ) exp(i2nnk/N) Z, (147)
n=0

where {zn}, 0 £ n £ N-1, is the collapsed version of sequence

fe Yr(nA)}, 0 $n < =,

n
Since (147) will likely be realized as the real part of an

FFT output, the question arises as to the interpretation and

utility of the total complex FFT output in (147). To this aim,

we rewrite Yaclt) in (146) (in its continuous time version) as

w

Y4o(t) = Re 4 f df exp(i2nft) Y_(f) & 8,(f) =
0

= Refz,(t) ® &, ,(t)} , (148)

where we define, for all t, Fourier transform

z,(t) = 4 J df exp(i2nft) vy (f) =
0

o

= [ af exp(iznfr) r2v(f) + 2¢"(£)] =
0

* * R
= ¥y, () + y (-t) = [y(t) + y (-t)] exp(i2nf _t) =
= y(t) + y(-t) + ify (t) - yu(-t)] . (149)
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That is, Yqelt) is the real part of the aliased vers%on of z (),
which itself is composed of the analytic waveform y_ (t) and its
mirror image. Thus, not only is z;(t) aliased according to
(148), but in addition, z,(t) contains terms which will further
overlap and thereby confuse the values of Yqcft) in the
fundamental range (0,1/4). (Of course, the real part of zy(t) in
(149) for t > 0 is, as expected, just y(t) for this causal real
case.)

Finally, sampling the sine transform of Yi(f) in (142) vyields

@

k} _ . -
y4s[ﬁ3] = - 44 ;21 sin(2nnk/N) Yi(nA) =
= - 470 Im ) _ exp(i2nnk/N) Y. (na) = (150)
=1
N-1
= - 44 Im E exp(i2nnk/N) Z, (151)
n=0

where lzn}, 0 £ n < N-1, is the collapsed version of sequence
{Yi(nA}, 1 < n < «. Relation (151) can be realized as an N-point
FFT of which only the imaginary part is kept for 0 < k £ N-1.

As above, the interpretation of the complete complex output
of the FFT in (151) is furnished by returning to the continuous

version of the sampled y4s(t) in (150). We express it as

-]

Yge(t) = - Im 4 j df exp(i2nft) Y (f) 8 b,(f) =
0
= Imfz,(t) @ &, ,,(E)} , (152)
62
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where we define, for all t, Fourier transform

z,(t) = - 4 J df exp(i2nft) Yi(f) =
0

w

= i [ af exp(iznft) [2u(f) - 2v°(£)) =

0
= ily,(t) - yi(-t)] = i[y(t) - y'(-t)] exp(i2rf_t) =  (153)
= ify(t) - y(-t)) - yult) - yy(-t) . (154)

Again, the aliasing of z,(t) in (152) and the mirror image of the
analytic waveform and complex envelope in (153) will serve to
confuse the usefulness of zz(t). The imaginary part of z,(t) in
(154) for t > 0 is just y(t), as expected, for this causal real

waveform.
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DISPLACED SAMPLING

such as at

If displaced samples of a waveform are desired,
time locations (k+8)/(NA) in (145), where 0 < B < 1, we can

obtain them via an N-point FFT as follows: from (131},

yl[hgg) = A 2: exp(i2nnk/N) exp(i2nnf/N) Y(nd) = (155)
n
N-1
=48 ) exp(i2nnk/N) z, for 0 £ k £ N-1 , (156)
n=0

where {zn}, 0 £ n £ N-1, is the collapsed version of sequence

[exp(i2nnB/N) Y(na)}, -» < n < «. That is, we have to load up

the arrays containing {zn} with phase-shifted versions of the

original sequence {Y(nA)} and then perform the N-point FFT.

Calculation of phasor P, = exp(i2rnfg/N) in (155) can take
exp(i2nf/N).

advantage of recursion p = p._,
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SUMMARY

The advantages of filtering the complex envelope spectrum by
means of a suitable lowpass filter are significant in some
instances. The sinqular behavior of the complex envelope
waveform is eliminated by utilizing a filter which cuts off at
finite frequencies, while the slow decay in the time domain of
the complex envelope is circumvented by using a filter with a
smoothly tapered cutoff that prevents any discontinuities in the
complex envelope spectrum from contributing.

The use of an FFT to evaluate the filtered complex envelope
is then an attractive efficient approach because the inherent
time aliasing associated with frequency sampling has been greatly
suppressed. Also, the very rapidly varying singular components
of the complex envelope have been eliminated, allowing for a
lower time-sampling rate, that is, smaller FFT sizes.

When two waveforms, each with its own imposed amplitude- and
phase-modulations, are convolved, such as encountered in the
narrowband excitation of a passband filter, the output complex
envelope is given exactly by the convolution of the individual
complex envelopes. Although the convolution of the two (complex)
imposed modulations is often a good approximation to the output
complex envelope, it has an error term. This analysis is

presented in appendix C.
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APPENDIX A. DETERMINATION OF CENTER FREQUENCY

Suppose we are given spectrum Y(f) of (narrowband) real
waveform y(t), but the center frequency of Y(f) is not obvious or
is unknown. The analytic waveform is still uniquely given by

@
y,(t) = [ af exp(iznft) v (f) = 2 [ af expiznety vf) . (a-1)
0
Make a guess at initial frequency fi near the center of Y (f).
Then compute the initial down-shifted waveform
(- 9
yi(t) = exp(—i2nfit) y,(t) = 2 J df exp(i2nft) Y(f+fi) . (A-2)
-f,
i
Compute initial phase P.(t) = arg{yi(t)} and then unwrap Pi(t).
Select time t in the interval T of interest and fit a straight
line a + Bt to the unwrapped phase P,(t) over T. Compute

frequency

£, = £, + 5% ; (A-3)

this is the center frequency of y (t) for t € T. Another
selection of a different time interval could lead to a somewhat
different center frequency; there is no unique center frequency
of an arbitrarily given spec: um Y(f).

The complex envelope is then
y(t) = exp(—ianCt) y,.(t) . (A-4)

The "physical" envelope or extracted amplitude modulation is
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act) = ly(erl = |y e)l = lyjerl (A-5)

which is independent of the choice of fi or fc. The extracted

phase of complex envelope y(t) is
P(t) = arg{y(t)} = arg{y_(t) exp(—i2nfct)) = P,(t) - Bt , (A-6)

where we used (A-4) and (A-2). Functions y;(t) and Pi(t) have
already been computed and can be used to evaluate the envelope

A(t) and phase P(t). The real waveform is

y(t) = Re{y+(t)] = Rely(t) exp(i2nfct)] = A(t) cos[2nfct + P(t)],

(A-7)
in terms of chosen center frequency f. and amplitude and phase

modulations A(t) and P(t), respectively. Although fc and P(t)
are not unique, the argument of the cosine and the waveform y(t)
in (A-7) are unique, as may be seen by the first equality in
(A~7). All of these relations hold for time t ¢ T.

If the fit of the straight line a + Bt to initial unwrapped
phase P.(t) over interval T is via minimum error energy, then we
find

HoV¥1 ~ H1Yo

— -— =3 n -
B = —3 pn—fdtt , v Jdtt P,(t) . (A-8)
HoHa = Hq T T

There is no need to explicitly compute a, although it should be
included in the error energy minimization in order to afford a

better fit.
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APPENDIX B. PROGRAM FOR FILTERED COMPLEX ENVELOPE VIA FFT

The program listed below actually computes the unfiltered
complex envelope by means of an FFT. 1In order to convert it to
one which will compute the filtered complex envelope, remove
lines 220 - 320 and replace them by the following lines:

220 F1=40. ! CUTOFF FREQUENCY < Fo

230 Hi=.5*PI/F1
240 M1=MxF1/Fo

250 FOR Ms=-M1 TO M1 ! -Fl1 < F < Fl1

260 J=Ms MODULO N ! COLLAPSING

270 F=Df *Ms ! FREQUENCY f

280 CALL Y(F+Fo,Al,Wo,Cp,Sp,Yr,Yi) !SHIFTED FREQUENCY FUNCTIOU
290 Cos=COS(H1x*F)

300 H=Cos*Cos ! REAL LOWPASS HANN FILTER

310 X(J)=X(J)+Yr+~H

320 Y{(J)=Y(J)-Yi*H ! CONJUGATE INPUT INTO FFT

19V COMPLEX ENYELOPE YIA SHIFTED FREGUEHCY FUNCTION

egs Al=1 ! DAMPIHG HALPHA
30 Fo=100 ! CARRIER FREGUEHCY
44 Fhi=-pPl-2 ' PHASE
Se M=5090 1 HUMEBER OF SAMFLES FOR F < 03 LIHE 2794
g H=1824 ! SIZE OF FFT; ZERUO SUESCRIFT
7a FEDIM CosiBiH- 43, KB H-13,Y8:H~1)
20 DIM Co=zC1B8245, 5489680, (48957
34 DOUBLE M, M, M2, T, Mt THTEGERS, HDT " JUBLE FRECISION
194 HZ=H 2
118 A=, *F1-H
120 FOR J=8 T H-/4
130 Coz ¢ Fr=COS{A*]) ! COUARTER-COSIHE TAELE IMH Cozi#l
149 HEUT J ‘
159 Cp=COsS{Phi>
10 Sp=SIH(PhI )
178 Ho=2#F]#F
159 DY =Fo- M I FREOQUEHCY THOREMEHT
138 ODt=1.-CH=ht ! TIME THOREMENT OH COMPLEX ENHYELDFE
209 MAT ¥=d(B,>
210 MAT Y¥=0B,)
g o Mz=-H
239 J=sMz MODULO H
249 CHLL Y8, Al Mo, Cp,Ep,Yr,Yiy © ¥{0)
254 ACJr=09%0r
ZED N L - T A V' COMJUGRTE IHFUT TO FFT
=7 FOFR Mas-M+1 TO M#1@ ) HOTICE UPFER LIMIT OH FREGUEMCY
239 I=ttz MODOLO H ! COLLAPSTHG
230 F=Df Mz ! FREQUENLCY §
00 CALL WOF+Fo, Al Mo, Cp, Sp,Wr,¥ia2 ! SHIFTED FREQUENCY FUHCTION
319 S PN R Sl ¢
320 SRS AN G PSS ' CONJUGATE IHPUT TO FFT
338 HEST Mz
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MAT H=XHxc2,.2Df)D

HAT 7=Yv+(2.*D¢) { # COHJUGHTE
CALL FFeladH, Cos(ad, NOs) Y20 1y t) OF COMFLE:
GINIT - EHYELUFE

PLOTTER 1S “GRAFHICSH
GRAFPHICS OH
WIHDOM ~HZ,N2,~-2,0 i CEHTER FLOT AT TIME t
LIHE TYPE 3
GRID H-58,1
LINE TYFE 4
MOYE ©,0
Tz=lt+H-4
ERAW Hod4, LGTIEXPC A1 2Tz
FEHUF
LIMNE TWFE 1
FOR Mzs=-HZ TO HZ2
J=Mz MODULS N
BEARCI
P AW
=HEHEYRY ' MAGHITUDE SOUARRED COMFLE: EHYELAQFE
IF T.8. THEH &7@
FEHUF
GOTD S5o
FLOT Mz, LT Tr%.5 ' MAGHITUDE OF COMFLEX EHYELOFE
HEXT M=
FEHIF
PRLUSE
GCLEAR
GRAPHICS 0N
WIHDOW -H2,HZ,-FI,FPI
LIHE TYPE 3
GRID H-&,F1-2
LIHE TY¥¥FE 1
FOR Ms=-HZ TOD H2 t PLOT COMPLEY EWVELOFE PHAZE
J=Mz HODULO KM
FLOT Mz, FHRArgoHo s, -0 Jad I COMIUGATE THE FFT OQUTFUT
HE®T M=z
PEHUF
FARAUSE
GULEAKR
GRAFHICS OH
LIHE TYPE 3
GRID H-8,PI1-2
LINE TYPE I
FOR Mzs=-HZ TO M2
J=M:z: MODLD H

2=Mz+Dt [ TINE t
Coz=C050la*Ts I SHIFT FHASE THE
Sin=SIH MaaTz ! COMFLEX EHYELOFE BY Wo Tz
w=EsOl
RO V' COMJUGRTE THE FFT OuUTFPUT

FLOT Mz, FHRrgU#Cas-Y#3in, He3in+yY*«Cas
HE®T Mz

FENUP

FRUZE

EMD

i
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DEF FHArgdx,¥) ! FPRINCIPARL RRG(Z>

IF ¥=9., THEM RETURH .S*PI1#SGHIY

H=ATHOY 8D

IF “>9. THEH RETURH R

IF %<B. THEH RETURH A-PI

RETURH R+PI

FHEHD

]

SUHE YUF, AT, Mo, Cp, Sp, Y, Vi ! SPECTRAL FUNMCTION
W=2,2P]%F

T=h-Ho

D=AT*A1+T%T

R1=(Cp*#A1+Sp#TH-D

11=0Sp+Al-Cp#To D

T=H+Ho

D=Rt=R1+T+T

Rz=(Cp*A1-SpxTH-D

[2=0-Sp*skA1-Cp=TH D

Vr=.9%#(R1+R2

Yi=,.5#(11+12)

SUBEHD

]

SUHE FFel4¢DOUBLE H,REAL Cos(#3,x (%), 7V(%3) 1 Ni=2-14=163234; & SUE!
DOUELE Logan,HL,HZ NI H4, ],k ! INTEGERS ¢ 2+31 = 2,147,433, cd:
DOUEBLE I1,12,13,14,15,1e,17,18,193,116,111,182,112,114,L 03130
IF H=1 THEHW SUEBEXIT

IF H>2 THEH 12596

A=XCB3+KX {1

EAS D EFAGFES S )

AR

R=YCB»+Y (1)

VilasV(as-Y{1n

]

Y{Br=A
SUBEXIT
A=LOGCH> ~LOGC2,. )
Log2rn=HA

IF RESC(A-Log2Zni<1.E-8 THEH 1388
FRINT "M ="3M;"15 HOT A POMWER OF 23 DISALLOMED."
PAUSE

Hi=H-"4

HZ=H1+1

H3=HZ+1

Ha=H3+H1

FOR I1l=1 TO LogZn
[2=2~(LogZnr-11>

I13=2#12

14=H-13

FOR IS=1 TO 12
[€=0]15~1r%]4+]

IF le{=H2Z THEH 1448
Hl1=-Caz(NH4-T€~1>
Az=-Cos(le~H1-1>

GOTO 14e9

Al=CgesClE~-17
AZ=-CozHI-16-11

FOR [7=0 T3 MH-13 STEFP 13
18=17+15~1

I19=18+]2
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T1=H(IS)

T2=xd]9

T3=V(I82

Ta4=vC19)

R3=T1-T2

A4=T3-T4
HOlGy=sT1+T2

VIS =T34T4
MOI9r=HI*AS~ Ad

He*
VOIS =A1*A4+AZ A
HEXT 17

I1=LogZn+l

FOR I2=1 TO 14
Lifz~1>=1

IF I2XLog2n THEMNM
Lila-1o=2~.11-12)
HEXT 12
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=g

FOR I1=1 TO LUE3)

FOR I23=11 TO L{12> STEP L(13D
FOR I3=12 TO LC11) STEP LC12)
FOR I4=13 7O L{tv> STEP L1
FOR IS=I4 TO Lo9s STEP L(18)
FOR 1&=1S TO L(8s STEP L(9
FOR I7=1& TOQ L{?) SYEP L(8)
FOR 18=17 TO L{6) STEP L(?)
FOR I9=18 TO L{S) STEF L&)
FOk 118=19 TO Lc4)> STEP L(5>
FOR I11=11@ TO L(3> STEFP L(4>
FOR 112=111 TO L<25 STEP L<(3)
FOrR 113=112 TO LC13 STEP L<C2)
FOR 114=113 TO Lt@> STEP L1
J=T14-1

IF k>J THEH 1910

A=r KD
ROk =K Ty
¥{Jr=R
R=% KD
YCE3=YC)

Y Ji=H
K=t +1
MEXT 114
HE®T 113
HERT 112
HEXT 111
HE®T 110

HERT 19
HEXT le
HEXT 17
HEXT lé&
HELT 1%
HE®T 14
HEXT 173
HEXT L&
HEXT I1
SUEBEND
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APPENDIX C. CONVOLUTION OF TWO WAVEFORMS

Suppose real waveform x(t) excites passband filter H(f) with

real impulse response h{t). Then, the output is

i

Y(£f) H(f) X(f) , y(t) = h(t) @ x(t) . (C-1)
The single-sided output spectrum is

. - = = 1

Y (f) = 2 U(f) Y(f) = 2 U(E) H(f) X(f) =5 H (f) X (f) . (C-2)
The corresponding output analytic waveform is exactly

Y, (t) =3 h(t) 8 x,(t) , (C-3)

which 1s just (one-half of) the convolution of the individual
analytic waveforms.
If the center frequency of Y (f) is fc (see appendix A), then

the spectrum of the output complex envelope is, using (C-2),

—

1
Hy(E+E ) X (f+f) = 5 H(f) X(f) , (C-4)

Y(E) = Y (f+f ) = 5

2

where we have taken the same center frequency, f for H (f) as

Cl

well as X_(f). This relation in (C-4) is exact; it involves no

narrowband approximations. The output complex envelope

corresponding to (C-4) 1is then exactly
1
ye) =35 h(t) & x(t) . (C-5)

That 1is, the complex envelope of the convolution of any two
weveforms 1s equal to (one-half of) the convolution of the two

individual complex envelopes, irrespective of their frequency
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contents.
Now suppose that x(t) is given in terms of some complex

imposed modulation x;(t) according to
x(t) = Re{xi(t) exp(ianct)} ' (C-6)

which allows for amplitude-modulation as well as phase-

modulation. The spectrum of x(t) can then be expressed as
1 *
X(£f) = 5 [X;(f-f ) + X;(-£-£)] . (C-7)

Also, suppose that filter impulse response h(t) is expressible in

a similar form according to
h(t) = Refh;(t) exp(i2nf_t)} , (C-8)
with corresponding transfer function
1

H(E) = 5 [H(£-f,) + H;(~f—fc)] . (C-9)

The filter output spectrum then follows from (C-1), (C-7),

and (C-9) as
1 * *
Y(£) = 7 [Hy(f-f,) X;(f-f,) + Hy(-£-£) X, (-f-£_) +
* *
+ Hi(-f-f ) X (f-f ) + Hy(f-f ) X;(-£-£.) ] .  (C-10)

By inverse Fourier transforming the individual terms, the

corresponding waveform to (C-10) is found to be exactly
y(t) = Re{exp(ianct) [yy(t) + Yp(t) 11 (C-11)

where
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y,(t) = 3 hy(t) ® x;(t) , (C-12)
and
yb(t) = % [h;(t) exp(~i4nfct)] ® xi(t) . (C-13)

Relation (C-12) states that component ya(t} of output y(t)
in (C-11) is just the convolution of the two complex imposed
modulations hi(t) and xi(t). However, (C-11) and (C-13) reveal
that there is an additional term in y(t), which requires the
convolution of a relatively high-frequency component, namely
exp(-i4nfct). Since this latter term, Yp(t), will often be
small due to this oscillatory integrand, we may neglect it in
many circumstances.

A good way of assessing the importance of the Yp(t) term in
(C-11) is to observe that it is due to the second line of the
spectrum in (C-10); the first line in (C-10) corresponds to
ya(t). Since Hi(f) and Xi(f) are generally lowpass functions of
frequency, the function Hi(~f—fc) in (C-10) is centered around
f = -fc, while the Xi(f-fc) term peaks near f = fc. The
separation of these two functions is approximately 2fc on the £
axis; if this separation is somewhat greater than the bandwidths
of H, and Xiv then there is inconsequential overlap of any of the
frequency components in the second line of (C-10). This leads to
a small value for Yp(t) for all t and we can neglect its effect

relative to Ya(t) in (C-11).
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